Publications by authors named "Ezaldeen Esawi"

Adopting conventional conjugation approaches to construct antibody-targeted nanoparticles (NPs) has demonstrated suboptimal control over the binding orientation and the structural stability of monoclonal antibodies (mAbs). Hitherto, the developed antibody-targeted NPs have shown proof of concept but lack product homogeneity, batch-to-batch reproducibility, and stability, precluding their advancement toward the clinic. To circumvent these limitations and advance toward clinical application, herein, a refined approach based on site-specific construction of mAb-immobilized NPs will be appraised.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) are one of the most stable nanoparticles that have been prevalently used as examples for biological and biomedical applications. Herein, we evaluate the effect of AuNPs on the biological processes of dental pulp stem cells derived from exfoliated deciduous teeth (SHED). Two different shapes of PEGylated AuNPs, rods (AuNR-PEG) and spheres (AuNS-PEG), were prepared and characterized.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) has been established as a major factor in regulating the metabolism of albumin and IgG in humans by protecting them from intracellular degradation after they are endocytosed into cells. We assume that increasing the levels of endogenous FcRn proteins in cells would be beneficial to enhance the recycling of these molecules. In this study, we identify the compound 1,4-naphthoquinone as an efficient stimulator of FcRn protein expression in human THP-1 monocytic cells with potency at the submicromolar range.

View Article and Find Full Text PDF

Nanomedicine is an emerging field with continuous growth and differentiation. Liposomal formulations are a major platform in nanomedicine, with more than fifteen FDA-approved liposomal products in the market. However, as is the case for other types of nanoparticle-based delivery systems, liposomal formulations and manufacturing is intrinsically complex and associated with a set of dependent and independent variables, rendering experiential optimization a tedious process in general.

View Article and Find Full Text PDF

Aptamers offer a great opportunity to develop innovative drug delivery systems that can deliver cargos specifically into targeted cells. In this study, a chimera consisting of two aptamers was developed to deliver doxorubicin into cancer cells and release the drug in cytoplasm in response to adenosine-5'-triphosphate (ATP) binding. The chimera was composed of the AS1411 anti-nucleolin aptamer for cancer cell targeting and the ATP aptamer for loading and triggering the release of doxorubicin in cells.

View Article and Find Full Text PDF

Quinones are a class of cyclic organic compounds that are widely distributed in nature and have been shown to exhibit anti-inflammatory, antioxidant, and anticancerous activities. However, the molecular mechanisms/signaling by which these molecules exert their effect are still not fully understood. In this study, a group of quinone-derived compounds were examined for their potential inhibitory effect against human IRAK1 and IRAK4 kinases .

View Article and Find Full Text PDF

Column chromatography (CC) analysis of methanol and butanol extracts of the aerial parts of well as the methanol extract of its latex, led to the isolation of cardenolides, of which the structures were elucidated by NMR and HRESIMS spectroscopy. They also revealed several triterpenes and flavonoid glycoside. Based on the antiproliferative activity reported for cardenolides, the activity of calotropin and calotoxin was tested against two common cancer cell lines, human triple-negative breast cancer cell line (MDA-MB-231) and human lung adenocarcinoma cell line (A549).

View Article and Find Full Text PDF

Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity.

View Article and Find Full Text PDF