Publications by authors named "Eyube E"

Context: This work presents analytical expressions for ro-vibrational energy models of diatomic molecules by introducing fractional parameters to improve molecular interaction analysis. Thermodynamic models, including Helmholtz free energy, mean thermal energy, entropy, and isochoric heat capacity, are formulated for diatomic molecules such as CO (X ∑), Cs (3 ∑), K (X ∑), Li (6 Π), Li (1 Δ), Na (5 Δ), Na (C(2) Π), and NaK (c ∑). The incorporation of fractional parameters improves predictive accuracy for vibrational energies, as shown by reductions in percentage average absolute deviations from 0.

View Article and Find Full Text PDF

The bound-state solution of the radial Klein-Gordon equation has been obtained under the interaction of an exponential-type and Yukawa potential functions. The Greene-Aldrich approximation has been used to overcome the centrifugal barrier and enable the analytical solutions of the energy and wave functions in closed form. The momentum space wave function in D dimensions has been constructed using the Fourier transform.

View Article and Find Full Text PDF

Context: In this paper, the approximate analytical energy equations for the deformed hyperbolic potential have been obtained for arbitrary parameters of the potential. The potential function was transformed to a molecular potential by subjecting it to the Varshni conditions which allows for the determination of the energy levels of diatomic molecules. The molecular vibrational energy spectra for [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] diatomic molecules were obtained and found to match with the results obtained with another analytical approach, potential functions, and experimental data.

View Article and Find Full Text PDF

In this study, a diatomic molecule interacting potential such as the deformed Schiöberg oscillator (DSO) have been applied to diatomic systems. By solving the Schrödinger equation with the DSO, analytical equations for energy eigenvalues, molar entropy, molar enthalpy, molar Gibbs free energy and constant pressure molar heat capacity are obtained. The obtained equations were used to analyze the physical properties of diatomic molecules.

View Article and Find Full Text PDF

In this paper, the bound state solutions of the radial Schrödinger equation are obtained in closed form under an improved Scarf II potential energy function (ISPEF) constrained by external magnetic and Aharonov-Bohm (AB) flux fields. By constructing a suitable Pekeris-like approximation scheme for the centrifugal barrier, approximate analytical expressions for the bound-states and thermal partition function were obtained. With the aid of the partition function, an explicit equation for magnetization at finite temperatures is developed.

View Article and Find Full Text PDF

Owing to the devise applications of molecules in industries, the bound state solution of the non-relativistic wave equation with a molecular potential function has been obtained in a closed-form using the Nikiforov-Uvarov method. The solutions of the bound state are then applied to study the information-theoretic measures such as the one-dimensional Shannon and Renyi entropic densities. The expectation values for the position and momentum spaces were obtained to verify the Heisenberg's uncertainty principle.

View Article and Find Full Text PDF

Thermomagnetic properties, and its effects on Fisher information entropy with Schioberg plus Manning-Rosen potential are studied using NUFA and SUSYQM methods in the presence of the Greene-Aldrich approximation scheme to the centrifugal term. The wave function obtained was used to study Fisher information both in position and momentum spaces for different quantum states by the gamma function and digamma polynomials. The energy equation obtained in a closed form was used to deduce numerical energy spectra, partition function, and other thermomagnetic properties.

View Article and Find Full Text PDF

Since the proposition of the standard form of Morse potential [Formula: see text] model over the years, there has not been much attention on the potential. Its application to different studies such as the thermodynamic properties and information theory are yet to be reported to the best of our understanding. In this study, the solutions of the radial Schrödinger equation for the standard Morse potential is obtained using supersymmetric approach.

View Article and Find Full Text PDF

A shifted Morse potential model is modified to fit the study of the vibrational energies of some molecules. Using a traditional technique/methodology, the vibrational energy and the un-normalized radial wave functions were calculated for the modified shifted Morse potential model. The condition that fits the modified potential for molecular description were deduced together with the expression for the screening parameter.

View Article and Find Full Text PDF