Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety.
View Article and Find Full Text PDFThis last decade, chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish "off-the-shelf" allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies.
View Article and Find Full Text PDFGenome engineering technologies are powerful tools in cell-based immunotherapy to optimize or fine-tune cell functionalities. However, their use for multiple gene edits poses relevant biological and technical challenges. Short hairpin RNA (shRNA)-based cell engineering bypasses these criticalities and represents a valid alternative to CRISPR-based gene editing.
View Article and Find Full Text PDFAllogeneic chimeric antigen receptor (CAR) T holds the promise of taking this therapeutic approach to broader patient populations while avoiding the intensive manufacturing demands of autologous cell products. One limitation to delivering an allogeneic CAR T is T-cell receptor (TCR) driven toxicity. In this work, the expression of a peptide to interfere with TCR signaling was assessed for the generation of allogeneic CAR T cells.
View Article and Find Full Text PDFChimeric Antigen Receptor (CAR) T cells expressing the fusion of the NKG2D protein with CD3ζ (NKG2D-CAR T Cells) acquire a specificity for stress-induced ligands expressed on hematological and solid cancers. However, these stress ligands are also transiently expressed by activated T cells implying that NKG2D-based T cells may undergo self-killing (fratricide) during cell manufacturing or during the freeze thaw cycle prior to infusion in patients. To avoid target-driven fratricide and enable the production of NKG2D-CAR T cells for clinical application, two distinct approaches were investigated.
View Article and Find Full Text PDFPlasmacytoid dendritic cells (pDCs) are antigen presenting cells specialized in viral recognition through Toll-like receptor (TLR)7 and TLR9, and produce vast amounts of interferon alpha upon ligation of these TLRs. We had previously demonstrated a strong influx of pDCs in the tubulointerstitium of renal biopsies at the time of acute rejection. However, the role of human pDCs in mediating acute or chronic allograft rejection remains elusive.
View Article and Find Full Text PDFIn organ transplantation, alloantigens are taken up by antigen presenting cells and presented via the indirect pathway to T-cells which in turn can induce allograft rejection. Monitoring of these T-cells is of major importance; however no reliable assay is available to routinely monitor indirect allorecognition. Recently we showed that HLA monomers can be successfully used to monitor indirect allorecognition.
View Article and Find Full Text PDFBackground: Recognition of donor antigens can occur through two separate pathways: the direct pathway (non-self HLA on donor cells) and the indirect pathway (self-restricted presentation of donor derived peptides on recipient cells). Indirect allorecognition is important in the development of humoral rejection; therefore, there is an increasing interest in the monitoring of indirect alloreactive T-cells. We have used an in vitro model to determine the optimal requirements for indirect presentation and assessed the risk for semidirect presentation in this system.
View Article and Find Full Text PDF