Publications by authors named "Eynat Dellus-Gur"

Determining the fitness of specific microbial genotypes has extensive application in microbial genetics, evolution, and biotechnology. While estimates from growth curves are simple and allow high throughput, they are inaccurate and do not account for interactions between costs and benefits accruing over different parts of a growth cycle. For this reason, pairwise competition experiments are the current "gold standard" for accurate estimation of fitness.

View Article and Find Full Text PDF

Stress-induced mutagenesis is a widely observed phenomenon. Theoretical models have shown that stress-induced mutagenesis can be favoured by natural selection due to the beneficial mutations it generates. These models, however, assumed an error-free regulation of mutation rate in response to stress.

View Article and Find Full Text PDF

Introduction: Antibiotic resistance is an important public health issue, and vast resources are invested in researching new ways to fight it. Recent experimental works have shown that resistance to some antibiotics can result in increased susceptibility to others, namely induce cross-sensitivity. This phenomenon could be utilized to increase efficiency of antibiotic treatment strategies that minimize resistance.

View Article and Find Full Text PDF

Epistasis is a key factor in evolution since it determines which combinations of mutations provide adaptive solutions and which mutational pathways toward these solutions are accessible by natural selection. There is growing evidence for the pervasiveness of sign epistasis--a complete reversion of mutational effects, particularly in protein evolution--yet its molecular basis remains poorly understood. We describe the structural basis of sign epistasis between G238S and R164S, two adaptive mutations in TEM-1 β-lactamase--an enzyme that endows antibiotics resistance.

View Article and Find Full Text PDF

Protein evolvability includes two elements--robustness (or neutrality, mutations having no effect) and innovability (mutations readily inducing new functions). How are these two conflicting demands bridged? Does the ability to bridge them relate to the observation that certain folds, such as TIM barrels, accommodate numerous functions, whereas other folds support only one? Here, we hypothesize that the key to innovability is polarity--an active site composed of flexible, loosely packed loops alongside a well-separated, highly ordered scaffold. We show that highly stabilized variants of TEM-1 β-lactamase exhibit selective rigidification of the enzyme's scaffold while the active-site loops maintained their conformational plasticity.

View Article and Find Full Text PDF

In nature, the evolution of new protein functions is driven not only by side-chain substitutions (point mutations), but also by backbone modifications (insertions and deletions). The current laboratory diversification methods, however, are largely limited to point mutations. Of particular interest are short insertions-by-duplication that are frequent in nature but cannot be introduced in vitro in a library format (i.

View Article and Find Full Text PDF