Chronic wounds have been a global health risk that demands intensive exploration. A tri-layered biomaterial scaffold has been developed for skin wounds. The top layer of the scaffold is superhydrophobic, and the bottom layer is hydrophilic, both of which were electrospun using recycled expanded polystyrene (EPS) and monofilament fishing line (MFL), respectively.
View Article and Find Full Text PDFThe scarcity of useable water is severe and increasing in several regions of the Middle East, Central and Southern Asia, and Northern Africa. However, the earth’s atmosphere contains 37.5 million billion gallons of water in the invisible vapor phase with fast replenishment.
View Article and Find Full Text PDFThe lack of safe drinking water is among the main problems to be faced by many areas of the world due to climate change, unrestrained population increases, and unsustainable usage of water sources. Therefore, research projects focusing on water quality, pollution, and control for sustainable water sources are in high demand to manage any unexpected changes in water sources. Drinking water sources may be contaminated with organic and inorganic chemicals, disinfection by-products, and microorganisms.
View Article and Find Full Text PDFChronic wounds have been a global health threat over the past few decades, requiring urgent medical and research attention. The factors delaying the wound-healing process include obesity, stress, microbial infection, aging, edema, inadequate nutrition, poor oxygenation, diabetes, and implant complications. Biomaterials are being developed and fabricated to accelerate the healing of chronic wounds, including hydrogels, nanofibrous, composite, foam, spongy, bilayered, and trilayered scaffolds.
View Article and Find Full Text PDFThere is an ever-greater need for self-cleaning and water-repelling properties of hydrophobic materials at this time in history, mainly due to the coronavirus disease 2019 (COVID-19) pandemic. However, the fabrication processes used to create hydrophobic materials are typically time-consuming and costly. Thus, this study aims to create hydrophobic materials based on low-cost manufacturing.
View Article and Find Full Text PDFAerobic composting is an effective way to dispose of organic waste. However, considerable carbon is converted into CO and emitted into the atmosphere, which is a waste of the carbon resource and has the potential for the greenhouse gas effect. In this study, an innovative approach coupling aerobic composting exhaust and Spirulina platensis cultivation has been proposed and investigated, resulting in a double-edged solution to mitigating waste and co-generating biomass with a minimal cost of CO supplied in the culture.
View Article and Find Full Text PDF