Publications by authors named "Eyk A Schellenberger"

Purpose To synthesize two low-molecular-weight iron chelates and compare their T1 contrast effects with those of a commercial gadolinium-based contrast agent for their applicability in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging. Materials and Methods The animal experiments were approved by the local ethics committee. Two previously described iron (Fe) chelates of pentetic acid (Fe-DTPA) and of trans-cyclohexane diamine tetraacetic acid (Fe-tCDTA) were synthesized with stability constants several orders of magnitude higher than those of gadolinium-based contrast agents.

View Article and Find Full Text PDF

Sensitive cell detection by magnetic resonance imaging (MRI) is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP) and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP) designed by our department for magnetic particle imaging (MPI) with discontinued Resovist(®) regarding their suitability for detection of single mesenchymal stem cells (MSC) by MRI.

View Article and Find Full Text PDF

Purpose: To compare a superparamagnetic iron oxide (SPIO), VSOP-C184, with a gadopentetate dimeglumine with regard to signal-enhancing effects on T1-weighted dynamic magnetic resonance (MR) images and with another SPIO contrast medium with regard to signal-reducing effects on delayed T2-weighted MR images.

Materials And Methods: All experiments were approved by the responsible Animal Care Committee. Twenty rabbits (five for each contrast agent and dose) implanted with VX-2 carcinoma were imaged at 1.

View Article and Find Full Text PDF

The ability to image cardiomyocyte apoptosis in vivo with high-resolution MRI could facilitate the development of novel cardioprotective therapies. The sensitivity of the novel nanoparticle AnxCLIO-Cy5.5 for cardiomyocyte apoptosis was thus compared in vitro to that of annexin V-FITC and showed a high degree of colocalization.

View Article and Find Full Text PDF

Multimodal proteins, or proteins labeled with both fluorescent and magnetic reporter groups, can be used in a wide range of applications including FACS or fluorescence microscopy, MRI and or near-infrared based optical imaging, or to fractionate cells by magnetic cell sorting. A problem with multimodal proteins, however, is the need to maximize bioactivity, often achieved by minimizing the number of modification points of the protein, while attaching fluorescent and magnetic labels. Here we describe the synthesis of a magneto/optical form of annexin V, achieved by reacting the amino-CLIO nanoparticle with Cy5.

View Article and Find Full Text PDF

In vivo imaging of treatment responses at the molecular level could have a significant impact on the speed of drug discovery and ultimately lead to personalized medicine. Strong interest has been shown in developing quantitative fluorescence-based technologies with good molecular specificity and sensitivity for noninvasive 3D imaging through tissues and whole animals. We show herein that tumor response to chemotherapy can be accurately resolved by fluorescence molecular tomography (FMT) with a phosphatidylserine-sensing fluorescent probe based on modified annexins.

View Article and Find Full Text PDF

We have developed techniques for the efficient synthesis and screening of small libraries of surface-functionalized nanoparticles for the recognition of specific types of cells. To illustrate this concept we describe the development of a nanoparticle that preferentially recognizes apoptotic Jurkat cells in a manner similar to the apoptosis-recognizing protein annexin V. The nanoparticle, which is detectable by fluorescence or NMR relaxometry, was analyzed for the ability to recognize normal and apoptotic cells by fluorescence-activated cell sorting (FACS) analysis and fluorescence microscopy.

View Article and Find Full Text PDF

The many uses of chemically modified annexin Vs necessitate an understanding of the optimal degree of modification and modification sites of the protein. When reacted with the N-hydroxysuccinimide ester of Cy5.5, annexin V with one modification per mole of protein retained its affinity for phosphatidylserine of apoptotic cells, whereas modification with two dyes per mole of protein caused a complete loss of activity.

View Article and Find Full Text PDF

Annexin V, which recognizes the phosphatidylserine of apoptotic cells, was conjugated to crosslinked iron oxide (CLIO) nanoparticles, a functionalized superparamagnetic preparation developed for target-specific magnetic resonance imaging (MRI). The resulting nanoparticle had an average of 2.7 annexin V proteins linked per CLIO nanoparticle through disulfide bonds.

View Article and Find Full Text PDF

A rapid and accurate assessment of the antitumor efficacy of new therapeutic drugs could speed up drug discovery and improve clinical decision making. Based on the hypothesis that most effective antitumor agents induce apoptosis, we developed a near-infrared fluorescent (NIRF) annexin V to be used for optical sensing of tumor environments. To demonstrate probe specificity, we developed both an active (i.

View Article and Find Full Text PDF