Objectives: This study aimed to compare the efficacy of royal jelly (RJ) and its major fatty acid 10-hydroxy-2-decenoic acid (10-HDA) on ischemic stroke-related pathologies using histological and molecular approaches.
Methods: Male rats were subjected to middle cerebral artery occlusion (MCAo) to induce ischemic stroke and were supplemented daily with either vehicle (control group), RJ or 10-HDA for 7 days starting on the day of surgery. On the eighth day, rats were sacrificed and brain tissue and blood samples were obtained to analyze brain infarct volume, DNA damage as well as apoptotic, inflammatory and epigenetic parameters.
Nesfatin-1 is an anorexigenic peptide suppressing food intake and is synthesized and secreted by neurons located in the hypothalamus. Our study was aimed to demonstrate the effect of excitatory and inhibitory neurotransmitters on NUCB2/nesfatin-1 neurons. In this context, dual peroxidase immunohistochemistry staining was performed using NUCB2/nesfatin-1 primary antibody with each of the primary antibodies of vesicular transporter proteins applied as markers for neurons using glutamate, acetylcholine, and GABA as neurotransmitters.
View Article and Find Full Text PDFBackground: Nesfatin-1 is a newly identified satiety peptide that has regulatory effects on food intake and glucose metabolism, and is located in the hypothalamic nuclei, including the supraoptic nucleus (SON). In this study, we have investigated the hypothesis that nesfatin-1 neurons are activated by refeeding and intraperitoneal glucose injection and that the glutamatergic system has regulatory influences on nesfatin-1 neurons in the SON.
Materials And Methods: The first set of experiments analysed activation of nesfatin-1 neurons after refeeding as a physiological stimulus and the effectiveness of the glutamatergic system on this physiological stimulation.
Background: Neuronostatin, a newly identified peptide, is accepted as an anorexigenic peptide since it suppresses food intake when given intracerebroventricularly. Although the effect mechanisms of neuronostatin have been shown in different studies, there are no reports in the literature describing the mechanisms controlling neuronostatin neurons. In this study, we aimed to determine the presence of the ionotropic glutamate receptor subunits (iGluRs) in neuronostatin neurons in the periventricular nucleus of the hypothalamus.
View Article and Find Full Text PDFNesfatin-1 and neuronostatin in the central nervous system participate in regulating stress responses. Glucocorticoid hormones affect the brain through glucocorticoid receptors (GR). We investigated in the rat the possibility of co-localizing nesfatin-1 and neuronostatin neurons in hypothalamic areas with GR.
View Article and Find Full Text PDFNesfatin-1, identified as an anorexigenic peptide, regulates the energy metabolism by suppressing food intake. The majority of nesfatin-1-synthesizing neurons are concentrated in various hypothalamic nuclei, especially in the supraoptic (SON), arcuate (ARC) and paraventricular nuclei (PVN). We tested the hypothesis that the glutamatergic system regulates nesfatin-1 neurons through glutamate receptors.
View Article and Find Full Text PDFNeuronostatin, a newly identified anorexigenic peptide, is present in the central nervous system. We tested the hypothesis that neuronostatin neurons are activated by feeding as a peripheral factor and that the glutamatergic system has regulatory influences on neuronostatin neurons. The first set of experiments analyzed the activation of neuronostatin neurons by refeeding as a physiological stimulus and the effectiveness of the glutamatergic system on this physiological stimulation.
View Article and Find Full Text PDFAim: To analyze the effects of glutamatergic agonists and antagonists on the activation of the A1 and A2 noradrenergic neurons localized in caudal ventrolateral medulla and nucleus tractus solitarii, respectively.
Methods: Rats were injected with glutamatergic agonists - kainic acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or N-methyl-D-aspartic acid (NMDA), and the brain sections were prepared for immunohistochemistry. Before agonist injections, antagonists - 6-cyano-7-nitroquinoxaline-2,3-dione or dizocilpine were administered.
Bosn J Basic Med Sci
February 2017
In this study, we aimed to determine the presence as well as the diverse distribution of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor subunits in the rat red nucleus. Using adult Sprague-Dawley rats as the experimental animals, immunohistochemistry was performed on 30 µm thick coronal brain sections with antibodies against α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (GluA1-4), kainate (GluK1, GluK2/3, and GluK5), and NMDA (GluN1 and GluN2A) receptor subunits. The results showed that all ionotropic glutamate receptor subunits are expressed in the red nucleus.
View Article and Find Full Text PDFOrexin neurons are localized in the lateral hypothalamus and regulate many functions including sleep-wake states. Substantial number of neurotransmitters and neuromodulators has been proposed to influence orexinergic system. Glutamate, as the major excitatory amino acid neurotransmitter in the hypothalamus, was shown to mediate orexin neurons in the regulation of wakefulness and feeding.
View Article and Find Full Text PDFThe aim of the present study was to assess the effects of intravenous (i.v.) cytidine-5'-diphosphate (CDP)-choline administration on the activation of oxytocin and vasopressin neurons in the supraoptic (SON) and paraventricular nuclei (PVN), using the immunohistochemical identification of c-Fos expression as a marker of neuronal activation and to correlate this with the plasma hormone levels.
View Article and Find Full Text PDFOrexin neuropeptides participate in the regulation of feeding as well as the regulation and maintenance of wakefulness and the cognitive functions. Orexin A and B share a common precursor, prepro-orexin and neurons are localized in the lateral hypothalamus. Physiological studies showed that these neurons are regulated by glutamatergic innervations.
View Article and Find Full Text PDFBackground: It is unusual to encounter hemorrhagic complications caused by arterial or venous damage during TSS. Problems with these structures can lead to permanent disability or death. Our aim was to quantitatively analyze anatomical and radiologic relationships among the BCS, the CCA, and the pituitary gland, as these structures are accessed during TSS.
View Article and Find Full Text PDFThe present study assessed if kainic acid activates oxytocinergic neurons and this activation is blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Dual immunohistochemistry for oxytocin and c-Fos showed that oxytocin neurons in SON and PVN express c-Fos following kainic acid administration, a significant increase when compared to the control group. Administration of CNQX prior to kainic acid caused a significant reduction.
View Article and Find Full Text PDFBackground: Numerous experimental and clinical studies have shown that intrastriatal fetal mesencephalic grafts grow, survive, and reinnervate host brain tissue, resulting in partial recovery of motor deficits. In addition, pharmacological evidence indicates that these grafts increase dopamine secretion in lesioned brain. However, to date, no grafting method has completely restored the nigrostriatal pathway, and there is no consensus on optimal graft numbers or locations.
View Article and Find Full Text PDFBrain Res Mol Brain Res
May 2005
Glutamate is the major excitatory neurotransmitter in the hypothalamus, which exerts its effects by activating ion channel-forming (ionotropic) or G-protein-coupled (metabotropic) receptors. Kainate-preferring glutamate receptor subunits (GluR5, GluR6, GluR7, KA1, and KA2) form one of the three ionotropic receptor families. In the present study, we analyzed the distribution of GluR5 subunit protein in the rat hypothalamus with immunohistochemistry.
View Article and Find Full Text PDFOestrogen exerts its effects in the brain by binding to and activating two members of the nuclear receptor family, oestrogen receptor (ER)-alpha and ER-beta. Evidence suggests that oestrogen-receptive neurones participate in the generation of reproductive behaviours and that they convey the oestrogen message to gonadotropin-releasing hormone (GnRH) neurones. The aim of the present study was to identify the neurochemical phenotype of a subset of oestrogen receptor-expressing neurones.
View Article and Find Full Text PDFThe excitatory amino acid neurotransmitter glutamate participates in the control of most (and possibly all) neuroendocrine systems in the hypothalamus. This control is exerted by binding to two classes of membrane receptors, the ionotropic and metabotropic receptor families, which differ in their structure and mechanisms of signal transduction. To gain a better understanding about the precise sites of action of glutamate and the subunit compositions of the receptors involved in the glutamatergic neurotransmission in the hypothalamus and septum, in situ hybridization was used with 35S-labeled cRNA probes for the different ionotropic receptor subunits, including glutamate receptor subunits 1-4 (GluR1-GluR4), kainate-2, GluR5-GluR7, N-methyl-D-aspartate (NMDA) receptor 1 (NMDAR1), and NMDAR2A-NMDAR2D.
View Article and Find Full Text PDFThe hypopthalamic paraventricular nucleus (PVN) coordinates multiple aspects of homeostatic regulation, including pituitary-adrenocortical function, cardiovascular tone, metabolic balance, fluid/electrolyte status, parturition and lactation. In all cases, a substantial component of this function is controlled by glutamate neurotransmission. In this study, the authors performed a high-resolution in situ hybridization analysis of ionotropic glutamate receptor subunit expression in the PVN and its immediate surround.
View Article and Find Full Text PDFDuring the preovulatory and estradiol-progesterone-induced GnRH-LH surge, a subpopulation of GnRH neurons transiently expresses the transcription factor c-fos, which is a useful marker of cell activation. To further characterize this subpopulation of GnRH neurons, multiple immunohistochemical procedures were applied to visualize GnRH, c-Fos, KA2, GluR5, GluR6, and GluR7 receptor subunits during different phases of the estrogen-progesterone-induced LH surge. The results show that the LH surge begins at 1400 h and peaks at 1600 h before returning to baseline late in the evening.
View Article and Find Full Text PDFIn situ hybridization and immunohistochemistry were used to determine the presence of kainate-preferring glutamate receptor subunits GluR6 and GluR7 mRNA and protein in the median eminence of the rat. The results show that most tanycytes lining the ventral third ventricle and many astrocytes within the median eminence contain the GluR7 receptor subunit mRNA but not the GluR5 and GluR6 receptor subunit mRNA. Immunohistochemical stainings show that the GluR6/7 receptor protein was localized to tanycytic cell bodies, their basal processes and to many other astrocytes in different layers of the median eminence.
View Article and Find Full Text PDFExcitatory amino acids, particularly glutamate, are thought to be important for the maturation of the brain-pituitary-gonadal axis and the induction of puberty in the rat. We have previously shown that, in the female rat, GnRH neurons preferentially express the KA2 and NMDAR2A receptor subunit mRNAs, but not AMPA or NMDAR1 mRNA. The aim of the present study was to determine whether the onset or rate of KA2 and NMDAR2A receptor expression in GnRH neurons is correlated with the onset of puberty.
View Article and Find Full Text PDFRecent Prog Horm Res
August 1997
In this review, the current information about the location of GnRH receptor protein and GnRH receptor mRNA in the rat central nervous system is summarized as well as the changes that occur in the GnRH receptor mRNA levels during different endocrine conditions of the animals. The results of these studies show that GnRH receptor protein and mRNA levels change in parallel in the hippocampus, suggesting that pretranscriptional factors control the synthesis of the receptor. In the arcuate and ventromedial nuclei of the hypothalamus, GnRH receptor mRNA levels are highest during the early morning of proestrus and during the morning of an estrogen-progesterone-induced LH surge.
View Article and Find Full Text PDFThe aims of the present study were to determine: 1. If glutamate neurites can provide input to gonadotropin-releasing hormone (GnRH) neurons; 2. Which glutamate receptor subtype mRNAs are expressed in GnRH neurons; and 3.
View Article and Find Full Text PDF