Publications by authors named "Eydiejo Kurchan"

The competition between intramolecular histidine-heme loop formation and ligand-mediated oligomer formation in the denatured state is investigated for two yeast iso-1-cytochrome c variants, AcH26I52 and AcA25H26I52. Besides the native His 18 heme ligand, both variants contain a single His at position 26. The AcA25H26I52 variant has Pro 25 mutated to Ala.

View Article and Find Full Text PDF

Protein folding is dependent on the formation and persistence of simple loops during the earliest events of the folding process. Ease of loop formation and persistence is believed to be dependent on the steric properties of the residues involved in loop formation. We have investigated this conformational factor in the denatured state of iso-1-cytchrome c using a five alanine insert in front of a unique histidine in the N-terminal region of the protein.

View Article and Find Full Text PDF

The vertebrate nuclear pore protein Nup153 contains a novel RNA binding domain. This 150-amino acid region was previously found to bind preferentially to a panel of mRNAs when compared with structured RNAs, such as tRNA, U snRNA, and double-stranded RNA. The ability to broadly recognize mRNA led to the conclusion that the Nup153 RNA binding domain confers a general affinity for single-stranded RNA.

View Article and Find Full Text PDF

The earliest events in protein folding involve the formation of simple loops. Observing the rates of loop closure under denaturing conditions can provide direct insight into the relative probability and sequence determinants for formation of loops of different sizes. The persistence of these initial contacts is equally important for efficient folding, so measurement of rates of loop breakage under denaturing conditions is also essential.

View Article and Find Full Text PDF