Aging is often considered to affect both the peripheral (i.e. the cochlea) and central (brainstem and thalamus-cortex) auditory systems.
View Article and Find Full Text PDFCharacterizing the microenvironment of a damaged organ of Corti and identifying the basic mechanisms involved in subsequent epithelial reorganization are critical for improving the outcome of clinical therapies. In this context, we studied the expression of a variety of cell markers related to cell shape, cell adhesion and cell plasticity in the rat organ of Corti poisoned with amikacin. Our results indicate that, after severe outer hair cell losses, the cytoarchitectural reorganization of the organ of Corti implicates epithelial-mesenchymal transition mechanisms and involves both collective and individual cell migratory processes.
View Article and Find Full Text PDFCochlear fibrosis is a common finding following cochlear implantation. Evidence suggests that cochlear fibrosis could be triggered by inflammation and epithelial-to-mesenchymal cell transition (EMT). In this study, we investigate the mechanisms of cochlear fibrosis and the risk/benefit ratio of local administration of the anti-inflammatory drug dexamethasone (DEX) and antimitotic drug aracytine (Ara-C).
View Article and Find Full Text PDFCochlear activity is regulated by the olivo-cochlear bundle, which originates from the brainstem and projects onto the hair cells and auditory nerve fibers. Two efferent components can be distinguished: the medial and lateral olivo-cochlear efferent originating from the medial, and the lateral nuclei of the superior olivary complex. The input of the efferent systems on hair cells occurs during development and persists in the adult cochlea.
View Article and Find Full Text PDFAutosomal-dominant sensorineural hearing loss is genetically heterogeneous, with a phenotype closely resembling presbycusis, the most common sensory defect associated with aging in humans. We have identified SLC17A8, which encodes the vesicular glutamate transporter-3 (VGLUT3), as the gene responsible for DFNA25, an autosomal-dominant form of progressive, high-frequency nonsyndromic deafness. In two unrelated families, a heterozygous missense mutation, c.
View Article and Find Full Text PDFCurrently, many millions of people treated for various ailments receive high doses of salicylate. Consequently, understanding the mechanisms by which salicylate induces tinnitus is an important issue for the research community. Behavioral testing in rats have shown that tinnitus induced by salicylate or mefenamate (both cyclooxygenase blockers) are mediated by cochlear NMDA receptors.
View Article and Find Full Text PDFTo investigate a possible involvement of protein kinase C (PKC) in cochlear efferent neurotransmission, we studied the expression of the calcium-dependent PKC beta II isoform in the rat organ of Corti at different postnatal ages using immunofluorescence and immunoelectron microscopy. We found evidence of PKC beta II as early as postnatal day (PND) 5 in efferent axons running in the inner spiral bundle and in Hensen cells. At PND 8, we also found PKC beta II in efferents targeting outer hair cells (OHCs), and a slight detection at the synaptic pole in the first row of the basal and middle cochlear turns.
View Article and Find Full Text PDFConclusion: Current neurotransmission models based on animal studies on the mammalian inner ear not always reflect the situation in human. Rodents and primates show significant differences in characteristics of efferent innervation as well as the distribution of neuroactive substances.
Objective: Immunohistochemistry demonstrates the mammalian efferent system as neurochemically complex and diverse: several neuroactive substances may co-exist within the same efferent terminal.
This report summarizes recent neuropharmacological data at the IHC afferent/efferent synaptic complex: the type of Glu receptors and transporter involved and the modulation of this fast synaptic transmission by the lateral efferents. Neuropharmacological data were obtained by coupling the recording of cochlear potentials and single unit of the auditory nerve with intra-cochlear applications of drugs (multi-barrel pipette). We also describe the IHC afferent/efferent functioning in pathological conditions.
View Article and Find Full Text PDFThis study was designed to determine whether Coxsackie adenovirus receptor (CAR) and alpha nu beta3/alpha nu beta5 integrin co-receptors are involved in adenovirus gene transfer in the rat cochlea. We find that CAR and integrin co-receptors are expressed in every cell subtype transduced by the adenoviral vector Ad5 DeltaE1-E3/cytomegalovirus/green fluorescent protein (GFP) on cochlear slices in vitro. The spiral ganglion neurons, which do not express CAR, were not transduced by the virus.
View Article and Find Full Text PDFPrenatal cocaine exposure causes alterations in auditory brainstem response in children and experimental animals and has adverse effects on auditory information processing and language skills in children. These effects may result from lesions in the cochlea since this organ is particularly sensitive to chemical insults during the development. We have thus studied here the effect of prenatal cocaine exposure on the maturation of the rat cochlea using the transient non-catecholaminergic expression of tyrosine hydroxylase in spiral ganglion neurons as an index of cochlear maturation and morphometry to evaluate the maturation of primary auditory neurons and the organ of Corti.
View Article and Find Full Text PDFPurpose: Mutations in the mitochondrial dynamin-related GTPase OPA1 cause autosomal dominant optic atrophy (ADOA), but the pathophysiology of this disease is unknown. As a first step in functional studies, this study was conducted to evaluate the expression of Opa1 in whole retina and in isolated retinal ganglion cells (RGCs) and to test the effects of Opa1 downregulation in cultured RGCs.
Methods: Opa1 mRNA isoforms from total retina and from RGCs freshly isolated by immunopanning were determined by RT-PCR.
Fast excitatory transmission in the nervous system is mostly mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors whose subunit composition governs physiological characteristics such as ligand affinity and ion conductance properties. Here, we report that AMPA receptors at inner hair cell (IHC) synapses lack the GluR2 subunit and are transiently Ca2+-permeable before hearing onset as evidenced using agonist-induced Co2+ accumulation, Western blots and GluR2 confocal microscopy in the rat cochlea. AMPA (100 microM) induced Co2+ accumulation in primary auditory neurons until postnatal day (PND) 10.
View Article and Find Full Text PDFNucl Med Rev Cent East Eur
February 2005
Background: Solitary pulmonary microembolism is rarely discussed as a distinct diagnostic entity. The purpose of this investigation was to determine the prevalence and clinical significance of embolism limited to subsegmental branches in a group of patients discharged from hospital on anticoagulants with a diagnosis of pulmonary embolism based on ventilation-perfusion imaging followed by selective angiography.
Material And Methods: Of 29 consecutive patients with classic signs of pulmonary embolism at angiography, we identified a subgroup of 5 patients with sub-segmental embolism, which was solitary in all cases.
During the last stages of neuronal maturation, tyrosine hydroxylase is transiently expressed in the absence of the other catecholamine-synthesizing enzymes. We show here that it is expressed in rat spiral ganglion neurons between postnatal days 8 and 20, with a peak of expression at postnatal day 12. These tyrosine hydroxylase-immunoreactive neurons did not display aromatic amino acid decarboxylase- or dopamine-beta-hydroxylase-immunoreactivities, ruling out the possibilities of dopamine or noradrenaline synthesis.
View Article and Find Full Text PDFThe objectives of this study were to determine if diagnostic certainty on angiography correlates with scintigraphic probability for the diagnosis of pulmonary embolism. From a total of 160 consecutive patients who underwent both nuclear imaging and invasive selective pulmonary angiography, we reviewed the xenon-133 ventilation images in 2 posterior oblique views and the Tc-99m macroaggregated serum albumin perfusion scans and angiograms of 40 patients (15 men, 25 women; average age 57 years) who were discharged from the hospital on anticoagulants with a diagnosis of pulmonary embolism. The angiograms were reviewed and the diagnosis of embolism was considered certain in the presence of an intraluminal filling defect, a trailing embolus, or a branch occlusion equal to or larger than a segmental branch (n=29; 73%), and uncertain when the studies were reinterpreted as either equivocal or negative or in the presence of a single, small subsegmental filling defect of questionable clinical significance.
View Article and Find Full Text PDFOlivocochlear efferent neurons originate in the superior olivary complex of the brainstem and terminate within sensory cell regions of the organ of Corti. Components of this complex include the lateral olivocochlear bundle whose unmyelinated axons synapse with radial afferent dendrites below inner hair cells and the medial olivocochlear bundle, from which myelinated axons form a direct synaptic contact with outer hair cells. gamma-Aminobutyric acid (GABA), a major neurotransmitter of the central nervous system believed to be responsible for most fast-inhibitory transmissions, has been demonstrated with interspecies variation between mammal and primate auditory efferents.
View Article and Find Full Text PDFMutations in the gene encoding the gap junction protein connexin26 (Cx26) are responsible for the autosomal recessive isolated deafness, DFNB1, which accounts for half of the cases of prelingual profound hereditary deafness in Caucasian populations. To date, in vivo approaches to decipher the role of Cx26 in the inner ear have been hampered by the embryonic lethality of the Cx26 knockout mice. To overcome this difficulty, we performed targeted ablation of Cx26 specifically in one of the two cellular networks that it underlies in the inner ear, namely, the epithelial network.
View Article and Find Full Text PDFAcoustic trauma is the major cause of hearing loss in industrialised nations. We show in guinea-pigs that sound exposure (6 kHz, 120 dB sound pressure level for 30 min) leads to sensory cell death and subsequent permanent hearing loss. Ultrastructural analysis reveals that degeneration of the noise-damaged hair cells involved different mechanisms, including typical apoptosis, autolysis and, to a lesser extent, necrosis.
View Article and Find Full Text PDFCysteine-string protein is a vesicle-associated protein that plays a vital function in neurotransmitter release. We have studied its expression and regulation during cochlear maturation. Both the mRNA and the protein were found in primary auditory neurons and the sensory inner hair cells.
View Article and Find Full Text PDFDifferent neuroactive substances have been found in the efferent pathways of both the olivocochlear and vestibular systems. In the present study, the distribution and role of three neurotransmitters, choline acetyltransferase (ChAT), gamma aminobutyric acid (GABA), and enkephalin were investigated in the human labyrinth of 4 normal-hearing individuals. Immunohistochemical studies in human inner ear research, however, face a problem of procuring well-preserved specimens with maintained neurotransmitter antigenicity and morphology.
View Article and Find Full Text PDFEur J Neurosci
September 2001
Efferent feedback systems provide a means for modulating the input to the central nervous system. The lateral olivocochlear efferents modulate auditory nerve activity via synapses with afferent dendrites below sensory inner hair cells. We examined the effects of dopamine, one of the lateral olivocochlear neurotransmitters, by recording compound and single unit activity from the auditory nerve in adult guinea pigs.
View Article and Find Full Text PDFThis study investigates the morphological and molecular changes that occur in the inner hair cell area of the rat cochlea following aminoglycoside treatment. Rats were injected daily with 500 mg/kg of amikacin between postnatal day 9 (PND9) and PND16. Cochleae were examined at PND16 to PND120 using both scanning and transmission electron microscopy and molecular fluorescent labeling.
View Article and Find Full Text PDFEur J Neurosci
January 1999
Glutamate receptors mediate most excitatory synaptic transmission in the adult vertebrate brain, but their activation in developing neurons also influences developmental processes. However, little is known about the developmental regulation of the subunits composing these receptors. Here we have studied age-dependent changes in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits in the cochlear nucleus complex (CN), the superior olivary complex (SOC), the nuclei of the lateral lemniscus, and the inferior colliculus of the developing rat.
View Article and Find Full Text PDF