Publications by authors named "Eyal Kalo"

Uncontrolled accumulation of reactive oxygen species (ROS) causes oxidative stress and induces harmful effects. Both high ROS levels and p53 mutations are frequent in human cancer. Mutant p53 forms are known to actively promote malignant growth.

View Article and Find Full Text PDF

Concomitant expression of mutant p53 and oncogenic Ras, leading to cellular transformation, is well documented. However, the mechanisms by which the various mutant p53 categories cooperate with Ras remain largely obscure. From this study we suggest that different mutant p53 categories cooperate with H-Ras in different ways to induce a unique expression pattern of a cancer-related gene signature (CGS).

View Article and Find Full Text PDF

Compelling evidences have rendered the tumor microenvironment a crucial determinant in cancer outcome. Activating transcription factor 3 (ATF3), a stress response transcription factor, is known to have a dichotomous role in tumor cells, acting either as a tumor suppressor or an oncogene in a context-dependent manner. However, its expression and possible role in the tumor microenvironment are hitherto unknown.

View Article and Find Full Text PDF

Partial gain of chromosome arm 17q is an abundant aberrancy in various cancer types such as lung and prostate cancer with a prominent occurrence and prognostic significance in neuroblastoma--one of the most common embryonic tumors. The specific genetic element/s in 17q responsible for the cancer-promoting effect of these aberrancies is yet to be defined although many genes located in 17q have been proposed to play a role in malignancy. We report here the characterization of a naturally-occurring, non-reciprocal translocation der(X)t(X;17) in human lung embryonal-derived cells following continuous culturing.

View Article and Find Full Text PDF

The p53 gene is mutated in many human tumors. Cells of such tumors often contain abundant mutant p53 (mutp53) protein, which may contribute actively to tumor progression via a gain-of-function mechanism. We applied ChIP-on-chip analysis and identified the vitamin D receptor (VDR) response element as overrepresented in promoter sequences bound by mutp53.

View Article and Find Full Text PDF

In this study, we focus on the analysis of a previously identified cancer-related gene signature (CGS) that underlies the cross talk between the p53 tumor suppressor and Ras oncogene. CGS consists of a large number of known Ras downstream target genes that were synergistically upregulated by wild-type p53 loss and oncogenic H-Ras(G12V) expression. Here we show that CGS expression strongly correlates with malignancy.

View Article and Find Full Text PDF

Both transforming growth factor beta (TGF-beta) and p53 have been shown to control normal cell growth. Acquired mutations either in the TGF-beta signaling pathway or in the p53 protein were shown to induce malignant transformation. Recently, cross talk between wild-type p53 and the TGF-beta pathway was observed.

View Article and Find Full Text PDF

Myocardin is known as an important transcriptional regulator in smooth and cardiac muscle development. Here we found that myocardin is frequently repressed during human malignant transformation, contributing to a differentiation defect. We demonstrate that myocardin is a transcriptional target of TGFbeta required for TGFbeta-mediated differentiation of human fibroblasts.

View Article and Find Full Text PDF

Mutations in p53 are ubiquitous in human tumors. Some p53 mutations not only result in loss of wild-type (WT) activity but also grant additional functions, termed "gain of function." In this study, we explore how the status of p53 affects the immediate response gene activating transcription factor 3 (ATF3) in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-protein kinase C (PKC) pathway.

View Article and Find Full Text PDF