Publications by authors named "Eyal Greenberg"

Adoptive cell transfer (ACT) using autologous tumor infiltrating lymphocytes (TILs) was previously shown to yield clinical response in metastatic melanoma patients as an advanced line. Unfortunately, there is no reliable marker for predicting who will benefit from the treatment. We analyzed TIL samples from the infusion bags used for treatment of 57 metastatic melanoma patients and compared their microRNA profiles.

View Article and Find Full Text PDF

Immunotherapy has revolutionized cancer treatment, yet most patients do not respond. Here, we investigated mechanisms of response by profiling the proteome of clinical samples from advanced stage melanoma patients undergoing either tumor infiltrating lymphocyte (TIL)-based or anti- programmed death 1 (PD1) immunotherapy. Using high-resolution mass spectrometry, we quantified over 10,300 proteins in total and ∼4,500 proteins across most samples in each dataset.

View Article and Find Full Text PDF

Adoptive cell therapy (ACT) of tumor infiltration lymphocytes (TIL) yields promising clinical results in metastatic melanoma patients, who failed standard treatments. Due to the fact that metastatic lung cancer has proven to be susceptible to immunotherapy and possesses a high mutation burden, which makes it responsive to T cell attack, we explored the feasibility of TIL ACT in non-small cell lung cancer (NSCLC) patients. Multiple TIL cultures were isolated from tumor specimens of five NSCLC patients undergoing thoracic surgery.

View Article and Find Full Text PDF
Article Synopsis
  • - The study reveals that the RNA editing protein ADAR1 is down-regulated during the metastatic transition of melanoma, which increases melanoma cell growth and tumor characteristics.
  • - Knockdown of ADAR1 in melanoma cells leads to resistance against tumor infiltrating lymphocytes, indicating a significant role for ADAR1 in melanoma immune resistance through its effect on miR-222 and ICAM1 expression.
  • - Higher levels of miR-222 in melanoma tissues correlate with poor clinical response to the drug ipilimumab, suggesting miR-222 could serve as a biomarker to predict treatment outcomes and inform personalized therapy.
View Article and Find Full Text PDF

Melanoma is an aggressive malignancy with a high metastatic potential. microRNA-17 (miR-17) is a member of the oncogenic miR-17/92 cluster. Here we study the effect of miR-17 on melanoma cell motility.

View Article and Find Full Text PDF

The prognostic value of the carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) in melanoma was demonstrated more than a decade ago as superior to Breslow score. We have previously shown that intercellular homophilic CEACAM1 interactions protect melanoma cells from lymphocyte-mediated elimination. Here, we study the direct effects of CEACAM1 on melanoma cell biology.

View Article and Find Full Text PDF

The various roles of microRNAs (miRNAs) in controlling the phenotype of cancer cells are the focus of contemporary research efforts. We have recently shown that miR-17 directly targets the ADAR1 gene and thereby enhances melanoma cell aggressiveness. miR-17 and miR-20a belong to the miR-17/92 complex, and their mature forms are identical except for two non-seed nucleotides.

View Article and Find Full Text PDF

Melanoma is a high-grade, poorly differentiated malignant tumor of pigment-producing cells (melanocytes), accounting for more than 70% of the skin cancer related deaths. Although new lines of targeted therapy and immunotherapy were introduced lately, durable responses are not common as it is hard to target the elusive metastatic phenotype. microRNAs (miRNAs) are short non-coding RNA molecules that function as specific epigenetic regulators of the transcriptome.

View Article and Find Full Text PDF

Context: Quantification of circulating microRNAs (miRNAs) has recently become feasible and reliable, with most efforts focusing on miRNAs overexpressed by cancer cells.

Objective: Identification of a characteristic circulating miRNAs profile in melanoma patients.

Methods: We conducted a pilot study comprised of unbiased qPCR comparison of serum miRNA profiles between metastatic melanoma patients and healthy donors.

View Article and Find Full Text PDF

Some solid tumors have reduced posttranscriptional RNA editing by adenosine deaminase acting on RNA (ADAR) enzymes, but the functional significance of this alteration has been unclear. Here, we found the primary RNA-editing enzyme ADAR1 is frequently reduced in metastatic melanomas. In situ analysis of melanoma samples using progression tissue microarrays indicated a substantial downregulation of ADAR1 during the metastatic transition.

View Article and Find Full Text PDF

Vasculogenic mimicry (VM) describes functional vascular channels composed only of tumor cells and its presence predicts poor prognosis in melanoma patients. Inhibition of this alternative vascularization pathway might be of clinical importance, especially as several anti-angiogenic therapies targeting endothelial cells are largely ineffective in melanoma. We show the presence of VM structures histologically in a series of human melanoma lesions and demonstrate that cell cultures derived from these lesions form tubes in 3D cultures ex vivo.

View Article and Find Full Text PDF

Micro-RNAs (miRNAs) are small non-coding RNAs that regulate gene products at the post-transcriptional level. It is thought that loss of cell regulation by miRNAs supports cancer development. Based on whole genome sequencing of a melanoma tumor, we predict, using three different computational algorithms, that the melanoma somatic mutations globally reduce binding of miRNAs to the mutated 3'UTRs.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs with regulatory roles, which are involved in a broad spectrum of physiological and pathological processes, including cancer. A common strategy for identification of miRNAs involved in cell transformation is to compare malignant cells to normal cells. Here we focus on identification of miRNAs that regulate the aggressive phenotype of melanoma cells.

View Article and Find Full Text PDF