A unique mode of molecular oxygen activation, involving metal-ligand cooperation, is described. Ir pincer complexes [((t)BuPNP)Ir(R)] (R = C6H5 (1), CH2COCH3 (2)) react with O2 to form the dearomatized hydroxo complexes [((t)BuPNP*)Ir(R)(OH)] ((t)BuPNP* = deprotonated (t)BuPNP ligand), in a process which utilizes both O-atoms. Experimental evidence, including NMR, EPR, and mass analyses, indicates a binuclear mechanism involving an O-atom transfer by a peroxo intermediate.
View Article and Find Full Text PDFA series of cationic, neutral, and anionic Pd(II) and Pt(II) PNP (PNP = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine) complexes were synthesized. The neutral, dearomatized complexes [(PNP*)MX] (PNP* = deprotonated PNP; M = Pd, Pt; X = Cl, Me) were prepared by deprotonation of the PNP methylene group of the corresponding cationic complexes [(PNP)MX][Cl] with 1 equiv of base (KN(SiMe(3))(2) or (t)BuOK), while the anionic complexes [(PNP**)MX](-)Y(+) (PNP** = double-deprotonated PNP; Y = Li, K) were prepared by deprotonation of the two methylene groups of the corresponding cationic complexes with either 2 equiv of KN(SiMe(3))(2) or an excess of MeLi. While the reaction of [(PNP)PtCl][Cl] with an excess of MeLi led only to the anionic complex without chloride substitution, reaction of [(PNP)PdCl][Cl] with an excess of MeLi led to the methylated anionic complex [(PNP**)PdMe](-)Li(+).
View Article and Find Full Text PDFDFT calculations on the hydrogenation of a (PNP)Ir(I) complex, to give the trans--rather then the cis--dihydride isomer, show that the reaction proceeds via a deprotonation/protonation of the ligand arm with concomitant dearomatization/aromatization of the pyridine core. Thus, the actual H(2) activation step occurs by an Ir(III) complex and not by the Ir(I) starting complex, as supported by experimental observations. This ligand participation allows for products that would otherwise be inaccessible.
View Article and Find Full Text PDFThe cationic, pincer-type complexes [(SNS)Ir(COE)][BF4] (1) and [(SNS)Rh(COE)][BF4] (2) (SNS = 2,6-bis(t-butylthiomethy1)pyridine; COE = cyclooctene) complexes were prepared, and their structure and reactivity were studied. They are fluxional at room temperature as a result of "arm" hemilability, which can be frozen at low temperatures. Reaction of complex 1 with H2 resulted in a dimeric dihydride complex [(SNS)Ir(H2)]2[BF4]2 (3) in which the sulfur atoms bridge between two metal centers.
View Article and Find Full Text PDFThe Rh(II) mononuclear complexes [(PNPtBu)RhCl][BF4] (2), [(PNPtBu)Rh(OC(O)CF3)][OC(O)CF3] (4), and [(PNPtBu)Rh(acetone)][BF4]2 (6) were synthesized by oxidation of the corresponding Rh(I) analogs with silver salts. On the other hand, treatment of (PNPtBu)RhCl with AgOC(O)CF3 led only to chloride abstraction, with no oxidation. 2 and 6 were characterized by X-ray diffraction, EPR, cyclic voltammetry, and dipole moment measurements.
View Article and Find Full Text PDFUnusual reactions are reported, in which the aromatic PNP ligand (PNP = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine) acts in concert with the metal in the activation of H2 and benzene, via facile aromatization/dearomatization processes of the ligand. A new, dearomatized electron-rich (PNP*)Ir(I) complex 2 (PNP* = deprotonated PNP) activates benzene to form the aromatic (PNP)Ir(I)Ph 4, which upon treatment with CO undergoes a surprising oxidation process to form (PNP*)Ir(III)(H)CO 6, involving proton migration from the ligand "arm" to the metal, with concomitant dearomatization. 4 undergoes stereoselective activation of H2 to exclusively form the trans-dihydride 7, rather than the expected cis-dihydride complex.
View Article and Find Full Text PDFThe cationic PNP-Ir(I)(cyclooctene) complex 1 (PNP = 2,6-bis-(di-tert-butyl phosphino methyl)pyridine) reacts with benzene at 25 degrees C to quantitatively yield the crystallographically characterized, square pyramidal, iridium phenyl hydride complex cis-(PNP)Ir(Ph)(H), 2, in which the hydride is trans to the vacant coordination site. The cationic complex 2 is stable to heating at 100 degrees C, in sharp contrast to the previously reported unstable neutral, isoelectronic (PCP)Ir(H)(Ph) (PCP = eta(3)-2,6-((t)()Bu(2)PCH(2))(2)C(6)H(3)). Heating of 2 at 50 degrees C with other arenes results in arene exchange.
View Article and Find Full Text PDF