We have previously identified that infection induces a unique form of myeloid training that protects male but not female mice from high fat diet induced disease. Here we demonstrate that ovarian derived hormones account for this sex specific difference. Ovariectomy of females prior to infection permits metabolic reprogramming of the myeloid lineage, with BMDM exhibiting carbon source flexibility for cellular respiration, and mice protected from systemic metabolic disease.
View Article and Find Full Text PDFDendritic cell (DC) activation is marked by key events including: (I) rapid induction and shifting of metabolism favoring glycolysis for generation of biosynthetic metabolic intermediates and (II) large scale changes in gene expression including the upregulation of the antimicrobial enzyme inducible nitric oxide synthase (iNOS) which produces the toxic gas nitric oxide (NO). Historically, acute metabolic reprogramming and NO-mediated effects on cellular metabolism have been studied at specific timepoints during the DC activation process, namely at times before and after NO production. However, no formal method of real time detection of NO-mediated effects on DC metabolism have been fully described.
View Article and Find Full Text PDFAnaplastic thyroid cancer (ATC) is one of the most lethal solid tumors, yet there are no effective, long-lasting treatments for ATC patients. Most tumors, including tumors of the endocrine system, exhibit an increased consumption of glucose to fuel cancer progression, and some cancers meet this high glucose requirement by metabolizing glycogen. Our goal was to determine whether ATC cells metabolize glycogen and if this could be exploited for treatment.
View Article and Find Full Text PDFDendritic cell (DC) activation is characterized by sustained commitment to glycolysis that is a requirement for survival in DC subsets that express inducible NO synthase () due to NO-mediated inhibition of mitochondrial respiration. This phenomenon primarily has been studied in DCs from the classic laboratory inbred mouse strain C57BL/6J (B6) mice, where DCs experience a loss of mitochondrial function due to NO accumulation. To assess the conservation of NO-driven metabolic regulation in DCs, we compared B6 mice to the wild-derived genetically divergent PWD/PhJ (PWD) strain.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2021
Cells regulate their cell volume, but cell volumes may change in response to metabolic and other perturbations. Many metabolomics experiments use cultured cells to measure changes in metabolites in response to physiological and other experimental perturbations, but the metabolomics workflow by mass spectrometry only determines total metabolite amounts in cell culture extracts. To convert metabolite amount to metabolite concentration requires knowledge of the number and volume of the cells.
View Article and Find Full Text PDFIdentifying the "essential" components of an undergraduate immunology lecture course can be daunting because of the varying postgraduate pathways students take. The American Association of Immunologists Education Committee commissioned an Ad Hoc Committee, representing undergraduate, graduate, and medical institutions as well as the biotechnology community, to develop core curricular recommendations for teaching immunology to undergraduates. In a reiterative process involving the American Association of Immunologists teaching community, 14 key topics were identified and expanded to include foundational concepts, subtopics and examples, and advanced subtopics, providing a flexible list for curriculum development and avenues for higher-level learning.
View Article and Find Full Text PDFThe need for alternative treatments for multiple sclerosis (MS) has triggered copious amounts of research into microbial therapies focused on manipulating the microbiota-gut-brain axis. This comprehensive review was intended to present and systematically evaluate the current clinical and preclinical evidence for various probiotic and commensal gut microbial therapies as treatments for MS, using the Bradford Hill criteria (BHC) as a multi-parameter assessment rubric. Literature searches were performed to identify a total of 37 relevant studies (6 human, 31 animal), including 28 probiotic therapy and 9 commensal therapy studies.
View Article and Find Full Text PDFNext Generation Sequencing (NGS) has become an important tool in the biological sciences and has a growing number of applications across medical fields. Currently, few undergraduate programs provide training in the design and implementation of NGS applications. Here, we describe an inquiry-based laboratory exercise for a college-level molecular biology laboratory course that uses real-time MinION deep sequencing and bioinformatics to investigate characteristic genetic variants found in cancer cell-lines.
View Article and Find Full Text PDFCD4 T cells enable the critical B cell humoral immune protection afforded by most effective vaccines. We and others have recently identified an alternative source of help for B cells in mice, invariant NK T (iNKT) cells. iNKT cells are innate glycolipid-specific T cells restricted to the nonpolymorphic Ag-presenting molecule CD1d.
View Article and Find Full Text PDFBackground: Despite increased interest in mesenchymal stromal cell (MSC)-based cell therapies for acute respiratory distress syndrome (ARDS), clinical investigations have not yet been successful and our understanding of the potential mechanisms of MSC actions in ARDS remains limited. ARDS is driven by an acute severe innate immune dysregulation, often characterised by inflammation, coagulation and cell injury. How this inflammatory microenvironment influences MSC functions remains to be determined.
View Article and Find Full Text PDFIn this issue, we introduce the second part of a series of reviews focusing on how immunometabolism influences host and pathogen interactions during infection. This part of the collection addresses the interface between metabolism and specific types of infection, including immunometabolism in macrophages during helminth infection, the role of metabolism in T-cell exhaustion during chronic viral infections and host immunometabolism in the defence against Mycobacterium tuberculosis infection. These reviews, together with the four articles published in part 1 of the series in November 2020, offer new insights into the complex interactions between mammalian hosts and microbial pathogens through the lens of cellular metabolic regulation.
View Article and Find Full Text PDFMacrophages have a defined role in the pathogenesis of metabolic disease and cholesterol metabolism where alternative activation of macrophages is thought to be beneficial to both glucose and cholesterol metabolism during high fat diet induced disease. It is well established that helminth infection protects from metabolic disease, but the mechanisms underlying protection are not well understood. Here, we investigated the effects of Schistosoma mansoni infection and cytokine activation in the metabolic signatures of bone marrow derived macrophages using an approach that integrated transcriptomics, metabolomics, and lipidomics in a metabolic disease prone mouse model.
View Article and Find Full Text PDFHere we announce the first part of an exciting new series of reviews exploring the impact of immunometabolism in the interaction between host and pathogen, and in the outcome of infection. This collection discusses the links between metabolism and epigenetic control of cell function, post-translation modifications of host proteins that determine protein fate and host cell function, the metabolic determinants of cell migration and immune cell activity, and the tussle for iron as a metabolic mediator of host-pathogen domination. Together these reviews provide engaging new insight into the metabolic signals that guide the dynamic conversation between microbial pathogens and the mammalian hosts they aim to occupy.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2020
Growing evidence demonstrates that human mesenchymal stromal cells (MSCs) modify their in vivo anti-inflammatory actions depending on the specific inflammatory environment encountered. Understanding this better is crucial to refine MSC-based cell therapies for lung and other diseases. Using acute exacerbations of cystic fibrosis (CF) lung disease as a model, the effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid (BALF) samples, as a surrogate for the in vivo clinical lung environment, on MSC viability, gene expression, secreted cytokines, and mitochondrial function were compared with effects of BALF collected from healthy volunteers.
View Article and Find Full Text PDFDendritic cells (DCs) increase their metabolic dependence on glucose and glycolysis to support their maturation, activation-associated cytokine production, and T-cell stimulatory capacity. We have previously shown that this increase in glucose metabolism can be initiated by both Toll-like receptor (TLR) and C-type lectin receptor (CLR) agonists. In addition, we have shown that the TLR-dependent demand for glucose is partially satisfied by intracellular glycogen stores.
View Article and Find Full Text PDFDendritic cells (DCs) activated via TLR ligation experience metabolic reprogramming, in which the cells are heavily dependent on glucose and glycolysis for the synthesis of molecular building blocks essential for maturation, cytokine production, and the ability to stimulate T cells. Although the TLR-driven metabolic reprogramming events are well documented, fungal-mediated metabolic regulation via C-type lectin receptors such as Dectin-1 and Dectin-2 is not clearly understood. Here, we show that activation of DCs with fungal-associated β-glucan ligands induces acute glycolytic reprogramming that supports the production of IL-1β and its secretion subsequent to NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation.
View Article and Find Full Text PDFDendritic cell (DC) activation is characterized by an acute increase in glucose metabolic flux that is required to fuel the high anabolic rates associated with DC activation. Inhibition of glycolysis significantly attenuates most aspects of DC immune effector function including antigen presentation, inflammatory cytokine production, and T cell stimulatory capacity. The cellular nutrient sensor mammalian/mechanistic Target of Rapamycin (mTOR) is an important upstream regulator of glycolytic metabolism and plays a central role in coordinating DC metabolic changes and immune responses.
View Article and Find Full Text PDFSerum amyloid A (SAA) proteins are a family of acute phase apolipoproteins implicated to directly modulate innate and adaptive immune responses. However, new studies comparing endogenous SAAs and recombinant forms of these proteins have questioned the function of SAA in inflammation and immunity. We generated SAA3 knockout mice to evaluate the contribution of SAA3 to lung development and immune-mediated lung disease.
View Article and Find Full Text PDFIn the field of immunology, there is an increasing interest in cellular energy metabolism and its outcome on immune cell effector function. Activation of immune cells leads to rapid metabolic changes that are central to cellular biology in order to support the effector responses. Therefore, the need for user-friendly and dependable assay technologies to address metabolic regulation and nutrient utilization in immune cells is an important need in this field.
View Article and Find Full Text PDFBackground: Emerging studies suggest that enhanced glycolysis accompanies inflammatory responses. Virtually nothing is known about the relevance of glycolysis in patients with allergic asthma.
Objectives: We sought to determine whether glycolysis is altered in patients with allergic asthma and to address its importance in the pathogenesis of allergic asthma.
Cancer Lett
January 2018
Dendritic cells (DCs) are canonical antigen presenting cells of the immune system and serve as a bridge between innate and adaptive immune responses. When DCs are activated by a stimulus through toll-like receptors (TLRs), DCs undergo a process of maturation defined by cytokine & chemokine secretion, co-stimulatory molecule expression, antigen processing and presentation, and the ability to activate T cells. DC maturation is coupled with an increase in biosynthetic demand, which is fulfilled by a TLR-driven upregulation in glycolytic metabolism.
View Article and Find Full Text PDFDendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized.
View Article and Find Full Text PDFAlcohol use disorders are common both in the United States and globally, and are associated with a variety of co-morbid, inflammation-linked diseases. The pathogenesis of many of these ailments are driven by the activation of the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18. We hypothesized that protracted exposure of leukocytes to ethanol would amplify inflammasome activation, which would help to implicate mechanisms involved in diseases associated with both alcoholism and aberrant NLRP3 inflammasome activation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2015
Successful induction of B-cell activation and memory depends on help from CD4+ T cells. Invariant natural killer T (iNKT) cells (glycolipid-specific, CD1d-restricted innate lymphocytes) provide both cognate (direct) and noncognate (indirect) helper signals to enhance B-cell responses. Both forms of iNKT-cell help induce primary humoral immune responses, but only noncognate iNKT-cell help drives humoral memory and plasma cells.
View Article and Find Full Text PDF