In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer's and Parkinson's disease. It was shown that oligomers are important players in the aggregation cascade of these proteins.
View Article and Find Full Text PDFThe small soluble aggregates of Aβ are broadly documented as potential targets for the development of new compounds with the capacity to inhibit the early stages of Alzheimer´s disease. Nevertheless, Aβ peptides show an intrinsically disordered character with a high propensity for aggregation, which complicates the identification of conserved structural patterns. Because of this, experimental techniques find substantial difficulties in the characterization of such soluble oligomers.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2022
Protein-lipid interactions modulate a plethora of physiopathologic processes and have been the subject of countless studies. However, these kinds of interactions in the context of viral envelopes have remained relatively unexplored, partially because the intrinsically small dimensions of the molecular systems escape to the current resolution of experimental techniques. However, coarse-grained and multiscale simulations may fill that niche, providing nearly atomistic resolution at an affordable computational price.
View Article and Find Full Text PDFApolipoprotein A-I (apoA-I) has a key function in the reverse cholesterol transport. However, aggregation of apoA-I single point mutants can lead to hereditary amyloid pathology. Although several studies have tackled the biophysical and structural consequences introduced by these mutations, there is little information addressing the relationship between the evolutionary and structural features that contribute to the amyloid behavior of apoA-I.
View Article and Find Full Text PDFThis dataset contains a collection of molecular dynamics (MD) simulations of polyglutamine (polyQ) and glutamine-rich (Q-rich) peptides in the multi-microsecond timescale. Primary data from coarse-grained simulations performed using the SIRAH force field has been processed to provide fully atomistic coordinates. The dataset encloses MD trajectories of polyQs of 4 (Q4), 11 (Q11), and 36 (Q36) amino acids long.
View Article and Find Full Text PDFComput Struct Biotechnol J
March 2021
Poly glutamine and glutamine-rich peptides play a central role in a plethora of pathological aggregation events. However, biophysical characterization of soluble oligomers -the most toxic species involved in these processes- remains elusive due to their structural heterogeneity and dynamical nature. Here, we exploit the high spatio-temporal resolution of coarse-grained simulations as a computational microscope to characterize the aggregation propensity and morphology of a series of polyglutamine and glutamine-rich peptides.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2021
The challenges posed by intrinsically disordered proteins (IDPs) to atomistic and coarse-grained (CG) simulations are boosting efforts to develop and reparametrize current force fields. An assessment of the dynamical behavior of IDPs' and unstructured peptides with the CG SIRAH force field suggests that the current version achieves a fair description of IDPs' conformational flexibility. Moreover, we found a remarkable capability to capture the effect of point mutations in loosely structured peptides.
View Article and Find Full Text PDFTrypanothione synthetase (TryS) produces -bis(glutathionyl)spermidine (or trypanothione) at the expense of ATP. Trypanothione is a metabolite unique and essential for survival and drug-resistance of trypanosomatid parasites. In this study, we report the mechanistic and biological characterisation of optimised -substituted paullone analogues with anti-TryS activity.
View Article and Find Full Text PDFPost-translational modifications (PTMs) on proteins significantly enlarge the physicochemical diversity present in biological macromolecules, altering function, localization, and interactions. Despite their critical role in regulating cellular processes, theoretical methods are not yet fully capable of coping with this diversity. These limitations are particularly more marked for coarse-grained (CG) models, in which comprehensive and self-consistent parametrizations are less frequent.
View Article and Find Full Text PDFHelminths use an alternative mitochondrial electron transport chain (ETC) under hypoxic conditions, such as those found in the gastrointestinal tract. In this alternative ETC, fumarate is the final electron acceptor and rhodoquinone (RQ) serves as an electron carrier. RQ receives electrons from reduced nicotinamide adenine dinucleotide through complex I and donates electrons to fumarate through complex II.
View Article and Find Full Text PDFCarnitine Palmitoyltransferase 1A (CPT 1A) is an enzyme anchored to the outer mitochondrial membrane (OMM), where it regulates the passage of fatty acids into the mitochondria and intervenes in the process of β-oxidation of long-chain fatty acids. Although CPT 1A is inhibited by malonyl-CoA, its activity is also modulated by the curvature of OMM. This modulation depends on the behavior of the N-terminal domain (NTD), which can be adsorbed onto the OMM (nonactive CPT 1A) or interacting with the C-terminal domain (active CPT 1A).
View Article and Find Full Text PDFCeliac disease (CeD) is a highly prevalent chronic immune-mediated enteropathy developed in genetically predisposed individuals after ingestion of a group of wheat proteins (called gliadins and glutenins). The 13mer α-gliadin peptide, p31-43, induces proinflammatory responses, observed by in vitro assays and animal models, that may contribute to innate immune mechanisms of CeD pathogenesis. Since a cellular receptor for p31-43 has not been identified, this raises the question of whether this peptide could mediate different biological effects.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2019
The capability to handle highly heterogeneous molecular assemblies in a consistent manner is among the greatest challenges faced when deriving simulation parameters. This is particularly the case for coarse-grained (CG) simulations in which chemical functional groups are lumped into effective interaction centers for which transferability between different chemical environments is not guaranteed. Here, we introduce the parametrization of a set of CG phospholipids compatible with the latest version of the SIRAH force field for proteins.
View Article and Find Full Text PDFA new version of the coarse-grained (CG) SIRAH force field for proteins has been developed. Modifications to bonded and non-bonded interactions on the existing molecular topologies significantly ameliorate the structural description and flexibility of a non-redundant set of proteins. The SIRAH 2.
View Article and Find Full Text PDFCeliac disease (CD) is a chronic enteropathy elicited by a Th1 response to gluten peptides in the small intestine of genetically susceptible individuals. However, it remains unclear what drives the induction of inflammatory responses of this kind against harmless antigens in food. In a recent work, we have shown that the p31-43 peptide (p31-43) from α-gliadin can induce an innate immune response in the intestine and that this may initiate pathological adaptive immunity.
View Article and Find Full Text PDFA series of novel mimetic peptides were designed, synthesised and biologically evaluated as inhibitors of Aβ aggregation. One of the synthesised peptidic compounds, termed compound 7 modulated Aβ aggregation as demonstrated by thioflavin T fluorescence, acting also as an inhibitor of the cytotoxicity exerted by Aβ aggregates. The early stage interaction between compound 7 and the Aβ monomer was investigated by replica exchange molecular dynamics (REMD) simulations and docking studies.
View Article and Find Full Text PDFBecause of resistance development by cancer cells against current anticancer drugs, there is a considerable interest in developing novel antitumor agents. We have previously demonstrated that CIGB-552, a novel cell-penetrating synthetic peptide, was effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Studies of protein-peptide interactions have shown that COMMD1 protein is a major mediator of CIGB-552 antitumor activity.
View Article and Find Full Text PDF