Publications by authors named "Excel R S Maylem"

Adipose tissues produce a variety of biologically active compounds, including cytokines, growth factors and adipokines. Adipokines are important as they function as endocrine hormones that are related to various metabolic and reproductive diseases. The goal of this review was to summarise the role of asprosin, a recently discovered adipokine, and compare its role in ovarian steroidogenesis with that of other adipokines including adiponectin, leptin, resistin, apelin, visfatin, chemerin, irisin, and gremlin 1.

View Article and Find Full Text PDF

Asprosin is an adipokine synthesized by the white adipose tissue that regulates glucose homeostasis and that has been reported to affect bovine theca cell function and follicular growth, but its role on granulosa cell functions remains to be unveiled. Hence, the objective of this study was to investigate asprosin impacts on granulosa cell steroidogenesis. Bovine granulosa cells from small ovarian follicles were cultured in vitro to investigate the effects of asprosin on cell proliferation, production of steroids, mRNA abundance of genes that encode steroidogenic enzymes and cell cycle regulators, and protein relative abundance of steroidogenic signaling pathways.

View Article and Find Full Text PDF

The emerging Fusarium mycotoxins enniatins (ENNs) have been the focus of new research because of their well-documented existence in various cereal and grain products. Research findings indicate that reproductive disorders may be caused by exposure to Fusarium mycotoxins, but little work has evaluated ENNs on reproductive function. Therefore, to determine the effects of ENNA on the proliferation and steroidogenesis of granulosa cells (GC), experiments were conducted using bovine GC cultures.

View Article and Find Full Text PDF

Context: Little is known about the hormonal regulation of feline ovarian granulosa cell proliferation and steroidogenesis.

Aims: To determine if transforming growth factor β1 (TGFB1), activin, epidermal growth factor (EGF), follicle stimulating hormone (FSH), luteinizing hormone (LH), melatonin, and insulin-like growth factor 1 (IGF1) regulate granulosa cell steroidogenesis and proliferation in cats, three experiments were conducted in winter season.

Methods: Granulosa cells were isolated and treated in vitro with various hormones in serum-free medium for 48h after an initial 48h plating in 10% fetal calf serum.

View Article and Find Full Text PDF

Emerging Fusarium mycotoxins beauvericin (BEA), enniatins (ENNs), and moniliformin (MON) are gaining increasing interest due to their wide presence especially in cereals and grain-based products. In vitro and in vivo studies indicate that Fusarium mycotoxins can be implicated in reproductive disorders in animals. Of these mycotoxins, BEA may affect reproductive functions, impairing the development of oocytes in pigs and sheep.

View Article and Find Full Text PDF

Fibrillin-1 (FBN1) functions as a structural protein in the ovary, while the role of its protein product asprosin remains unknown. Both proteins are encoded by the FBN1 gene and when it is cleaved at the C-terminal end, asprosin is produced. Asprosin is associated with various metabolic parameters and sex-related hormones in women.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the hormonal regulation of ovarian granulosa cells in cats to understand their role in fertility and hormone production.
  • Five experiments were conducted, analyzing granulosa cells from over 75 cat ovaries collected in different seasons, using various hormone treatments.
  • Results showed that IGF1 and FSH together significantly enhanced cell proliferation and estradiol production, while factors like EGF and FGF2 inhibited estradiol production without influencing progesterone production or cell numbers.
View Article and Find Full Text PDF

Asprosin is a novel fasting-induced protein encoded by fibrillin-1 (FBN1) gene, produced when FBN1 is cleaved by the enzyme furin, and is associated with insulin resistance and polycystic ovarian syndrome in humans. To characterize mRNA abundance of FBN1, FURIN, and the presumed asprosin receptor, olfactory receptor family 4 subfamily M member 1 (OR4M1) in granulosa (GC) and theca cells (TC), and identify hormones regulating FBN1 mRNA expression, GC and TC from small (1-5 mm; SM) and large (>8 mm; LG) follicles were collected from ovaries of heifers obtained at an abattoir and used for real-time PCR gene expression analysis or in vitro evaluation of hormone regulation and asprosin effects. SMTC had 151-fold greater (P < 0.

View Article and Find Full Text PDF

The E2F family of transcription factors plays an important role in the control of the cell cycle, cell proliferation, and differentiation, and their role in ovarian function is just emerging. Although some evidence suggests a possible role of E2F1 in ovarian follicular development, what regulates its production in ovarian cells is unknown. Objectives of this study were to determine whether: (i) E2F1 gene expression in granulosa cells (GCs) and theca cells (TCs) change with follicular development and (ii) E2F1 mRNA abundance in TC and GC is hormonally regulated.

View Article and Find Full Text PDF

Overexpression of the transcription factor, E2F8, has been associated with ovarian cancer. Objectives of this study were to determine: 1) if E2F8 gene expression in granulosa cells (GC) and theca cells (TC) change with follicular development, and 2) if E2F8 mRNA abundance in TC and GC is hormonally regulated. Using real-time PCR, E2F8 mRNA abundance in GC and TC was greater (P < 0.

View Article and Find Full Text PDF

In this study, we examined the effects of superstimulation using follicle-stimulating hormone (FSH) followed by gonadotropin-releasing hormone (GnRH) on buffalo embryo production by ultrasound-guided ovum pick-up (OPU) and in vitro fertilization (IVF). Nine Murrah buffaloes were subjected to OPU-IVF without superstimulation (control). The morphologies of the oocytes collected were evaluated, and oocytes were then submitted to in vitro maturation (IVM).

View Article and Find Full Text PDF