WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M and Jupiter-like radius of about 0.94 R (refs.
View Article and Find Full Text PDFBrown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity.
View Article and Find Full Text PDFThe understanding of planet formation has changed recently, embracing the new idea of pebble accretion. This means that the influx of pebbles from the outer regions of planet-forming disks to their inner zones could determine the composition of planets and their atmospheres. The solid and molecular components delivered to the planet-forming region can be best characterized by mid-infrared spectroscopy.
View Article and Find Full Text PDFEarly results from the James Webb Space Telescope-Mid-InfraRed Instrument (JWST-MIRI) guaranteed time programs on protostars (JOYS) and disks (MINDS) are presented. Thanks to the increased sensitivity, spectral and spatial resolution of the MIRI spectrometer, the chemical inventory of the planet-forming zones in disks can be investigated with unprecedented detail across stellar mass range and age. Here, data are presented for five disks, four around low-mass stars and one around a very young high-mass star.
View Article and Find Full Text PDFWater is a fundamental molecule in the star and planet formation process, essential for catalysing the growth of solid material and the formation of planetesimals within disks. However, the water snowline and the HDO:HO ratio within proto-planetary disks have not been well characterized because water only sublimates at roughly 160 K (ref. ), meaning that most water is frozen out onto dust grains and that the water snowline radii are less than 10 AU (astronomical units).
View Article and Find Full Text PDFThe physics of star formation and the deposition of mass, momentum and energy into the interstellar medium by massive stars ('feedback') are the main uncertainties in modern cosmological simulations of galaxy formation and evolution. These processes determine the properties of galaxies but are poorly understood on the scale of individual giant molecular clouds (less than 100 parsecs), which are resolved in modern galaxy formation simulations. The key question is why the timescale for depleting molecular gas through star formation in galaxies (about 2 billion years) exceeds the cloud dynamical timescale by two orders of magnitude.
View Article and Find Full Text PDFPhotodesorption of CO ice is suggested to be the main process that maintains a measurable amount of gaseous CO in cold interstellar clouds. A classical molecular dynamics simulation is used to gain insight into the underlying mechanism. Site-site pair potentials were developed on the basis of ab initio calculations for the ground and excited nonrigid CO dimer.
View Article and Find Full Text PDFA brief introduction and overview of the astrochemistry of dust, ice and gas and their interplay is presented. The importance of basic chemical physics studies of critical reactions is illustrated through a number of recent examples. Such studies have also triggered new insight into chemistry, illustrating how astronomy and chemistry can enhance each other.
View Article and Find Full Text PDFThe dynamics of the reaction H + OH → O ((3)P) + H2 have been studied in a series of quasi-classical trajectory (QCT) calculations and transition state theory (TST) methods using high quality (3)A' and (3)A″ potential energy surfaces (PESs). Accurate OH (υ, j) state resolved cross sections and rate constants on both potential energy surfaces are presented and fitted for OH at (υ = 0, j = 0-16) and (υ = 1, j = 0-6). The cross sections were calculated for different collisional energies (Ec), ranging from the threshold energy at each specific rovibrational state up to 1.
View Article and Find Full Text PDFPlanets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of "snow lines" of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H(+)), a reactive ion present in large abundance only where CO is frozen out.
View Article and Find Full Text PDFThe cosmic abundance of hydrides depends critically on high-energy UV, X-ray, and particle irradiation. Here we study hydrides in star-forming regions where irradiation by the young stellar object can be substantial, and density and temperature can be much enhanced over interstellar values. Lines of OH, CH, NH, and SH and their ions OH(+), CH(+), NH(+), SH(+), H2O(+), and H3O(+) were observed in star-forming regions by the HIFI spectrometer onboard the Herschel Space Observatory.
View Article and Find Full Text PDFThe statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem.
View Article and Find Full Text PDFThe determination of the water ortho-to-para ratio (OPR) is of great interest for studies of the formation and thermal history of water ices in the interstellar medium and protoplanetary disk environments. We present new Herschel observations of the fundamental rotational transitions of ortho- and para-water on the sightline toward Sagittarius B2(N), which allow improved estimates of the measurement uncertainties due to instrumental effects and assumptions about the excitation of water molecules. These new measurements, suggesting a spin temperature of 24-32 K, confirm the earlier findings of an OPR below the high-temperature value on the nearby sightline toward Sagittarius B2(M).
View Article and Find Full Text PDFFrom the masses of the planets orbiting the Sun, and the abundance of elements relative to hydrogen, it is estimated that when the Solar System formed, the circumstellar disk must have had a minimum mass of around 0.01 solar masses within about 100 astronomical units of the star. (One astronomical unit is the Earth-Sun distance.
View Article and Find Full Text PDFIn this paper, we discuss the astronomical search for water vapour in order to understand the disposition of water in all its phases throughout the processes of star and planet formation. Our ability to detect and study water vapour has recently received a tremendous boost with the successful launch and operation of the Herschel Space Observatory. Herschel spectroscopic detections of numerous transitions in a variety of astronomical objects, along with previous work by other space-based observatories, will be threaded throughout this paper.
View Article and Find Full Text PDFIcy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extrasolar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory has detected emission lines from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface, hinting at a water ice reservoir equivalent to several thousand Earth oceans in mass.
View Article and Find Full Text PDFWe present laboratory data on pure, layered and mixed CO and O2 ices relevant for understanding the absence of gaseous O2 in space. Experiments have been performed on interstellar ice analogues under ultra high vacuum conditions by molecular deposition at 14 K on a gold surface. A combination of reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) is used to derive spectroscopic and thermodynamic properties of the ices.
View Article and Find Full Text PDFCircumstellar disks are exposed to intense ultraviolet (UV) radiation from the young star. In the inner disks, the UV radiation can be enhanced by more than seven orders of magnitude compared with the average interstellar radiation field, resulting in a physical and chemical structure that resembles that of a dense photon-dominated region (PDR). This intense UV field affects the chemistry, the vertical structure of the disk, and the gas temperature, especially in the surface layers.
View Article and Find Full Text PDFWhen interstellar clouds collapse to form new stars and planets, the surrounding gas and dust become part of the infalling envelopes and rotating disks, thus providing the basic material from which new solar systems are formed. Instrumentation to probe the chemistry in low-mass star-forming regions has only recently become available. The results of a systematic program to study the abundances in solar-mass protostellar and protoplanetary regions are presented.
View Article and Find Full Text PDFWe present the results of classical dynamics calculations performed to study the photodissociation of water in crystalline and amorphous ice surfaces at a surface temperature of 10 K. A modified form of a recently developed potential model for the photodissociation of a water molecule in ice [S. Andersson et al.
View Article and Find Full Text PDF