Neuronal differentiation is regulated by nerve growth factor (NGF) and other neurotrophins. We explored the impact of NGF on mitochondrial dynamics and metabolism through time-lapse imaging, metabolomics profiling, and computer modeling studies. We show that NGF may direct differentiation by stimulating fission, thereby causing selective mitochondrial network fragmentation and mitophagy, ultimately leading to increased mitochondrial quality and respiration.
View Article and Find Full Text PDFHow cancer cells utilize nutrients to support their growth and proliferation in complex nutritional systems is still an open question. However, it is certainly determined by both genetics and an environmental-specific context. The interactions between them lead to profound metabolic specialization, such as consuming glucose and glutamine and producing lactate at prodigious rates.
View Article and Find Full Text PDFAn efficient treatment against a COVID-19 disease, caused by the novel coronavirus SARS-CoV-2 (CoV2), remains a challenge. The papain-like protease (PL) from the human coronavirus is a protease that plays a critical role in virus replication. Moreover, CoV2 uses this enzyme to modulate the host's immune system to its own benefit.
View Article and Find Full Text PDFCancer cell metabolism is dependent on cell-intrinsic factors, such as genetics, and cell-extrinsic factors, such nutrient availability. In this context, understanding how these two aspects interact and how diet influences cellular metabolism is important for developing personalized treatment. In order to achieve this goal, genome-scale metabolic models (GEMs) are used; however, genetics and nutrient availability are rarely considered together.
View Article and Find Full Text PDFMotivation: The gut microbiota is the human body's largest population of microorganisms that interact with human intestinal cells. They use ingested nutrients for fundamental biological processes and have important impacts on human physiology, immunity and metabolome in the gastrointestinal tract.
Results: Here, we present M2R, a Python add-on to cobrapy that allows incorporating information about the gut microbiota metabolism models to human genome-scale metabolic models (GEMs) like RECON3D.
The Michaelis-Menten equation is one of the most extensively used models in biochemistry for studying enzyme kinetics. However, this model requires at least a couple (e.g.
View Article and Find Full Text PDFDe novo designed helix-loop-helix peptide foldamers containing cis-2-aminocyclopentanecarboxylic acid residues were evaluated for their conformational stability and possible use in enzyme mimetic development. The correlation between hydrogen bond network size and conformational stability was demonstrated through CD and NMR spectroscopies. Molecules incorporating a Cys/His/Glu triad exhibited enzyme-like hydrolytic activity.
View Article and Find Full Text PDFThe potent transcription inhibitor Actinomycin D is used with several cancers. Here, we report the discovery that this naturally occurring antibiotic inhibits two human neutral aminopeptidases, the cell-surface alanine aminopeptidase and intracellular methionine aminopeptidase type 2. These metallo-containing exopeptidases participate in tumor cell expansion and motility and are targets for anticancer therapies.
View Article and Find Full Text PDFPeptide foldamers containing both cis-β-aminocyclopentanecarboxylic acid and α-amino acid residues combined in various sequence patterns (ααβ, αααβ, αβααβ, and ααβαααβ) were screened using CD and NMR spectroscopy for the tendency to form helices. ααβ-Peptides were found to fold into an unprecedented and well-defined 16/17/15/18/14/17-helix. By extending the length of the sequence or shifting a fragment of the sequence from one terminus to another in ααβ-peptides, the balance between left-handed and right-handed helix populations present in the solution can be controlled.
View Article and Find Full Text PDFA collection of twenty-six organoselenium compounds, ebselen and its structural analogues, provided a novel approach for inhibiting the activity of human methionine aminopeptidase 2 (MetAP2). This metalloprotease, being responsible for the removal of the amino-terminal methionine from newly synthesized proteins, plays a key role in angiogenesis, which is essential for the progression of diseases, including solid tumor cancers. In this work, we discovered that ebselen, a synthetic organoselenium drug molecule with anti-inflammatory, anti-oxidant and cytoprotective activity, inhibits one of the main enzymes in the tumor progression pathway.
View Article and Find Full Text PDFA collection of fifty phosphonic and phosphinic acids was screened for inhibition of ERAP1 and ERAP2, the human endoplasmic reticulum aminopeptidases. The cooperative action of these enzymes is manifested by trimming a variety of antigenic precursors to be presented on the cell surface by major histocompatibility class I. The SAR studies revealed several potent compounds, particularly among the phosphinic dipeptide analogues, that were strong inhibitors of ERAP2 (Ki=100-350nM).
View Article and Find Full Text PDFN'-substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.
View Article and Find Full Text PDFSeven crystal structures of alanyl aminopeptidase from Neisseria meningitides (the etiological agent of meningitis, NmAPN) complexed with organophosphorus compounds were resolved to determine the optimal inhibitor-enzyme interactions. The enantiomeric phosphonic acid analogs of Leu and hPhe, which correspond to the P1 amino acid residues of well-processed substrates, were used to assess the impact of the absolute configuration and the stereospecific hydrogen bond network formed between the aminophosphonate polar head and the active site residues on the binding affinity. For the hPhe analog, an imperfect stereochemical complementarity could be overcome by incorporating an appropriate P1 side chain.
View Article and Find Full Text PDFNeisseria meningitides is a gram-negative diplococcus bacterium and is the main causative agent of meningitis and other meningococcal diseases. Alanine aminopeptidase from N. meningitides (NmAPN) belongs to the family of metallo-exopeptidase enzymes, which catalyze the removal of amino acids from the N-terminus of peptides and proteins, and are found among all the kingdoms of life.
View Article and Find Full Text PDF