Electrophysiological recordings can provide detailed information of single neurons' dynamical features and shed light on their response to stimuli. Unfortunately, rapidly modelling electrophysiological data for inferring network-level behaviours remains challenging. Here, we investigate how modelled single neuron dynamics leads to network-level responses in the paraventricular nucleus of the hypothalamus (PVN), a critical nucleus for the mammalian stress response.
View Article and Find Full Text PDFIn the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization.
View Article and Find Full Text PDFWe report the phenomenon of frequency clustering in a network of Hodgkin-Huxley neurons with spike timing-dependent plasticity. The clustering leads to a splitting of a neural population into a few groups synchronized at different frequencies. In this regime, the amplitude of the mean field undergoes low-frequency modulations, which may contribute to the mechanism of the emergence of slow oscillations of neural activity observed in spectral power of local field potentials or electroencephalographic signals at high frequencies.
View Article and Find Full Text PDFExcessively high, neural synchronization has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronization mechanisms can thus help control or even treat epilepsy. In this paper, we study neural synchronization in a random network where nodes are neurons with excitatory and inhibitory synapses, and neural activity for each node is provided by the adaptive exponential integrate-and-fire model.
View Article and Find Full Text PDFWe have studied the effects of perturbations on the cat's cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with a small-world property.
View Article and Find Full Text PDF