Publications by authors named "Ewan D Wakefield"

Knowledge of how animals respond to weather and changes in their physical environment is increasingly important, given the higher frequency of extreme weather recorded in recent years and its forecasted increase globally. Even species considered to be highly adapted to extremes of weather, as albatrosses are to strong winds, may be disadvantaged by shifts in those extremes. Tracked albatrosses were shown recently to avoid storms and the strongest associated winds.

View Article and Find Full Text PDF

Density-dependent competition for food influences the foraging behaviour and demography of colonial animals, but how this influence varies across a species' latitudinal range is poorly understood. Here we used satellite tracking from 21 Northern Gannet colonies (39% of colonies worldwide, supporting 73% of the global population) during chick-rearing to test how foraging trip characteristics (distance and duration) covary with colony size (138-60 953 breeding pairs) and latitude across 89% of their latitudinal range (46.81-71.

View Article and Find Full Text PDF

Nutrients supplied via seabird guano increase primary production in some coastal ecosystems. A similar process may occur in the open ocean. To investigate this directly, we first measured bulk and leachable nutrient concentrations in guano sampled in the North Atlantic.

View Article and Find Full Text PDF

Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation.

View Article and Find Full Text PDF

Wandering albatrosses exploit wind shear by dynamic soaring (DS), enabling rapid, efficient, long-range flight. We compared the ability of a theoretical nonlinear DS model and a linear empirical model to explain the observed variation of mean across-wind airspeeds of GPS-tracked wandering albatrosses. Assuming a flight trajectory of linked, 137° turns, a DS cycle of 10 s and a cruise airspeed of 16 m s, the theoretical model predicted that the minimum wind speed necessary to support DS is greater than 3 m s.

View Article and Find Full Text PDF

Stable isotopes from archaic Falkland Islands wolves () indicate a high trophic, marine diet. Hamley argue that this is consistent with mutualism with Yaghan people. However, most had similar isotopic signatures in the European era, despite human persecution.

View Article and Find Full Text PDF

Background: Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reanalyzed wind speed data to model the flight performance of wandering albatrosses soaring over the Southern Ocean.

View Article and Find Full Text PDF

Search behavior is often used as a proxy for foraging effort within studies of animal movement, despite it being only one part of the foraging process, which also includes prey capture. While methods for validating prey capture exist, many studies rely solely on behavioral annotation of animal movement data to identify search and infer prey capture attempts. However, the degree to which search correlates with prey capture is largely untested.

View Article and Find Full Text PDF

Population-level estimates of species' distributions can reveal fundamental ecological processes and facilitate conservation. However, these may be difficult to obtain for mobile species, especially colonial central-place foragers (CCPFs; e.g.

View Article and Find Full Text PDF

Many established models of animal foraging assume that individuals are ecologically equivalent. However, it is increasingly recognized that populations may comprise individuals who differ consistently in their diets and foraging behaviors. For example, recent studies have shown that individual foraging site fidelity (IFSF, when individuals consistently forage in only a small part of their population's home range) occurs in some colonial breeders.

View Article and Find Full Text PDF

Exploitation of the seas is currently unsustainable, with increasing demand for marine resources placing intense pressure on the Earth's largest ecosystem [1]. The scale of anthropogenic effects varies from local to entire ocean basins [1-3]. For example, discards of commercial capture fisheries can have both positive and negative impacts on scavengers at the population and community-level [2-6], although this is driven by individual foraging behaviour [3,7].

View Article and Find Full Text PDF

Animal populations are frequently limited by the availability of food or of habitat. In central-place foragers, the cost of accessing these resources is distance-dependent rather than uniform in space. However, in seabirds, a widely studied exemplar of this paradigm, empirical population models have hitherto ignored this cost.

View Article and Find Full Text PDF

Colonial breeding is widespread among animals. Some, such as eusocial insects, may use agonistic behavior to partition available foraging habitat into mutually exclusive territories; others, such as breeding seabirds, do not. We found that northern gannets, satellite-tracked from 12 neighboring colonies, nonetheless forage in largely mutually exclusive areas and that these colony-specific home ranges are determined by density-dependent competition.

View Article and Find Full Text PDF