Publications by authors named "Ewan A Ross"

Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that are of considerable clinical potential in transplantation and anti-inflammatory therapies due to their capacity for tissue repair and immunomodulation. However, MSCs rapidly differentiate once in culture, making their large-scale expansion for use in immunomodulatory therapies challenging. Although the differentiation mechanisms of MSCs have been extensively investigated using materials, little is known about how materials can influence paracrine activities of MSCs.

View Article and Find Full Text PDF

Macrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells.

View Article and Find Full Text PDF

Clearance of intracellular infections caused by Typhimurium (STm) requires IFN-γ and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-γ mice succumb rapidly to STm infections, T-bet mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-γ and T-bet mice.

View Article and Find Full Text PDF

In many different cell types, pro-inflammatory agonists induce the expression of cyclooxygenase 2 (COX-2), an enzyme that catalyzes rate-limiting steps in the conversion of arachidonic acid to a variety of lipid signaling molecules, including prostaglandin E (PGE). PGE has key roles in many early inflammatory events, such as the changes of vascular function that promote or facilitate leukocyte recruitment to sites of inflammation. Depending on context, it also exerts many important anti-inflammatory effects, for example increasing the expression of the anti-inflammatory cytokine interleukin 10 (IL-10), and decreasing that of the pro-inflammatory cytokine tumor necrosis factor (TNF).

View Article and Find Full Text PDF

The mRNA-destabilizing factor tristetraprolin (TTP) binds in a sequence-specific manner to the 3' untranslated regions of many proinflammatory mRNAs and recruits complexes of nucleases to promote rapid mRNA turnover. Mice lacking TTP develop a severe, spontaneous inflammatory syndrome characterized by the overexpression of tumor necrosis factor and other inflammatory mediators. However, TTP also employs the same mechanism to inhibit the expression of the potent anti-inflammatory cytokine interleukin 10 (IL-10).

View Article and Find Full Text PDF

Autocrine or paracrine signaling by beta interferon (IFN-β) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-β is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2).

View Article and Find Full Text PDF

Thrombosis is a common, life-threatening consequence of systemic infection; however, the underlying mechanisms that drive the formation of infection-associated thrombi are poorly understood. Here, using a mouse model of systemic Salmonella Typhimurium infection, we determined that inflammation in tissues triggers thrombosis within vessels via ligation of C-type lectin-like receptor-2 (CLEC-2) on platelets by podoplanin exposed to the vasculature following breaching of the vessel wall. During infection, mice developed thrombi that persisted for weeks within the liver.

View Article and Find Full Text PDF

Dual-specificity phosphatase (DUSP) 1 dephosphorylates and inactivates members of the MAPK superfamily, in particular, JNKs, p38α, and p38β MAPKs. It functions as an essential negative regulator of innate immune responses, hence disruption of the Dusp1 gene renders mice extremely sensitive to a wide variety of experimental inflammatory challenges. The principal mechanisms behind the overexpression of inflammatory mediators by Dusp1(-/-) cells are not known.

View Article and Find Full Text PDF

In myeloid cells, the mRNA-destabilizing protein tristetraprolin (TTP) is induced and extensively phosphorylated in response to LPS. To investigate the role of two specific phosphorylations, at serines 52 and 178, we created a mouse strain in which those residues were replaced by nonphosphorylatable alanine residues. The mutant form of TTP was constitutively degraded by the proteasome and therefore expressed at low levels, yet it functioned as a potent mRNA destabilizing factor and inhibitor of the expression of many inflammatory mediators.

View Article and Find Full Text PDF

Background: The impact of exposure to multiple pathogens concurrently or consecutively on immune function is unclear. Here, immune responses induced by combinations of the bacterium Salmonella Typhimurium (STm) and the helminth Nippostrongylus brasiliensis (Nb), which causes a murine hookworm infection and an experimental porin protein vaccine against STm, were examined.

Methodology/principal Findings: Mice infected with both STm and Nb induced similar numbers of Th1 and Th2 lymphocytes compared with singly infected mice, as determined by flow cytometry, although lower levels of secreted Th2, but not Th1 cytokines were detected by ELISA after re-stimulation of splenocytes.

View Article and Find Full Text PDF

There are multiple, distinct B-cell populations in human beings and other animals such as mice. In the latter species, there is a well-characterized subset of B-cells known as B1 cells, which are enriched in peripheral sites such as the peritoneal cavity but are rare in the blood. B1 cells can be further subdivided into B1a and B1b subsets.

View Article and Find Full Text PDF

Helminth parasites remain one of the most common causes of infections worldwide, yet little is still known about the immune signaling pathways that control their expulsion. C57BL/6 mice are chronically susceptible to infection with the gastrointestinal helminth parasite Heligmosomoides polygyrus. In this article, we report that C57BL/6 mice lacking the adapter protein MyD88, which mediates signaling by TLRs and IL-1 family members, showed enhanced immunity to H.

View Article and Find Full Text PDF

The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear.

View Article and Find Full Text PDF

Vaccination with purified capsular polysaccharide Vi Ag from Salmonella typhi can protect against typhoid fever, although the mechanism for its efficacy is not clearly established. In this study, we have characterized the B cell response to this vaccine in wild-type and T cell-deficient mice. We show that immunization with typhoid Vi polysaccharide vaccine rapidly induces proliferation in B1b peritoneal cells, but not in B1a cells or marginal zone B cells.

View Article and Find Full Text PDF

Mucosal immunity is poorly activated after systemic immunization with protein Ags. Nevertheless, induction of mucosal immunity in such a manner would be an attractive and simple way to overcome the intrinsic difficulties in delivering Ag to such sites. Flagellin from Salmonella enterica serovar Typhimurium (FliC) can impact markedly on host immunity, in part via its recognition by TLR5.

View Article and Find Full Text PDF

Thymic atrophy is a frequent consequence of infection with bacteria, viruses, and parasites and is considered a common virulence trait between pathogens. Multiple reasons have been proposed to explain this atrophy, including premature egress of immature thymocytes, increased apoptosis, or thymic shutdown to prevent tolerance to the pathogen from developing. The severe loss in thymic cell number can reflect an equally dramatic reduction in thymic output, potentially reducing peripheral T cell numbers.

View Article and Find Full Text PDF

Phylogeny shows that CD4 T cell memory and lymph nodes coevolved in placental mammals. In ontogeny, retinoic acid orphan receptor (ROR)γ-dependent lymphoid tissue inducer (LTi) cells program the development of mammalian lymph nodes. In this study, we show that although primary CD4 T cell expansion is normal in RORγ-deficient mice, the persistence of memory CD4 T cells is RORγ-dependent.

View Article and Find Full Text PDF

The role of mesenchymal stromal cells (MSCs) in regulating immune responses in the thymus is currently unclear. Here we report the existence and role of a MSC population in the thymus that expresses the pericyte and MSC marker CD248 (endosialin). We show using a CD248-deficient mouse model, that CD248 expression on these cells is required for full post-natal thymus development and regeneration post-Salmonella infection.

View Article and Find Full Text PDF

Hematopoietic cells constitutively express CD31/PECAM1, a signaling adhesion receptor associated with controlling responses to inflammatory stimuli. Although expressed on CD4(+) T cells, its function on these cells is unclear. To address this, we have used a model of systemic Salmonella infection that induces high levels of T cell activation and depends on CD4(+) T cells for resolution.

View Article and Find Full Text PDF

Control of intracellular Salmonella infection requires Th1 priming and IFN-γ production. Here, we show that efficient Th1 priming after Salmonella infection requires CD11c(+) CD11b(hi) F4/80(+) monocyte-derived dendritic cells (moDCs). In non-infected spleens, moDCs are absent from T-cell zones (T zones) of secondary lymphoid tissues, but by 24 h post-infection moDCs are readily discernible in these sites.

View Article and Find Full Text PDF

Invasive nontyphoidal Salmonella (NTS), including Salmonella typhimurium (STm), are major yet poorly-recognized killers of infants in sub-Saharan Africa. Death in these children is usually associated with bacteremia, commonly in the absence of gastrointestinal symptoms. Evidence from humans and animal studies suggest that severe infection and bacteremia occur when specific Ab is lacking.

View Article and Find Full Text PDF

Although the expression of PECAM-1 (CD31) on vascular and haematopoietic cells within the bone marrow microenvironment has been recognized for some time, its physiological role within this niche remains unexplored. In this study we show that PECAM-1 influences steady state hematopoietic stem cell (HSC) progenitor numbers in the peripheral blood but not the bone marrow compartment. PECAM-1(-/-) mice have higher levels of HSC progenitors in the blood compared to their littermate controls.

View Article and Find Full Text PDF

PECAM-1 is a member of the superfamily of immunoglobulins (Ig) and is expressed on platelets at moderate level. PECAM-1 has been reported to have contrasting effects on platelet activation by the collagen receptor GPVI and the integrin, alphaIIbbeta3, even though both receptors signal through Src-kinase regulation of PLCgamma2. The present study compares the role of PECAM-1 on platelet activation by these two receptors and by the lectin receptor, CLEC-2, which also signals via PLCgamma2.

View Article and Find Full Text PDF

During thrombopoiesis, maturing megakaryocytes (MKs) migrate within the complex bone marrow stromal microenvironment from the proliferative osteoblastic niche to the capillary-rich vascular niche where proplatelet formation and platelet release occurs. This physiologic process involves proliferation, differentiation, migration, and maturation of MKs before platelet production occurs. In this study, we report a role for the glycoprotein PECAM-1 in thrombopoiesis.

View Article and Find Full Text PDF

Recent studies have demonstrated that neutrophils are not a homogenous population of cells. Here, we have identified a subset of human neutrophils with a distinct profile of cell-surface receptors [CD54(high), CXC chemokine receptor 1(low) (CXCR1(low))], which represent cells that have migrated through an endothelial monolayer and then re-emerged by reverse transmigration (RT). RT neutrophils, when in contact with endothelium, were rescued from apoptosis, demonstrate functional priming, and were rheologically distinct from neutrophils that had not undergone transendothelial migration.

View Article and Find Full Text PDF