The article Towards clinical grating-interferometry mammography, written by Carolina Arboleda, Zhentian Wang, Konstantins Jefimovs, Thomas Koehler, Udo Van Stevendaal, Norbert Kuhn, Bernd David, Sven Prevrhal, Kristina Lång, Serafino Forte, Rahel Antonia Kubik-Huch, Cornelia Leo.
View Article and Find Full Text PDFCorrect visualization of the vascular lumen is impaired in standard computed tomography (CT) because of blooming artifacts, increase of apparent size, induced by metallic stents and vascular calcifications. Recently, due to the introduction of photon-counting detectors in the X-ray imaging field, a new prototype spectral photon-counting CT (SPCCT) based on a modified clinical CT system has been tested in a feasibility study for improving vascular lumen delineation and visualization of coronary stent architecture. Coronary stents of different metal composition were deployed inside plastic tubes containing hydroxyapatite spheres to simulate vascular calcifications and in the abdominal aorta of one New Zealand White (NZW) rabbit.
View Article and Find Full Text PDFObjectives: Grating-interferometry-based mammography (GIM) might facilitate breast cancer detection, as several research works have demonstrated in a pre-clinical setting, since it is able to provide attenuation, differential phase contrast, and scattering images simultaneously. In order to translate this technique to the clinics, it has to be adapted to cover a large field-of-view within a clinically acceptable exposure time and radiation dose.
Methods: We set up a grating interferometer that fits into a standard mammography system and fulfilled the aforementioned conditions.
The purpose of this study was to investigate a preclinical spectral photon-counting CT (SPCCT) prototype compared to conventional CT for pulmonary imaging. A custom-made lung phantom, including nodules of different sizes and shapes, was scanned with a preclinical SPCCT and a conventional CT in standard and high-resolution (HR-CT) mode. Volume estimation was evaluated by linear regression.
View Article and Find Full Text PDFBackground: To evaluate the feasibility of multicolour quantitative imaging with spectral photon-counting computed tomography (SPCCT) of different mixed contrast agents.
Methods: Phantoms containing eleven tubes with mixtures of varying proportions of two contrast agents (i.e.
Objectives: After endovascular aortic repair (EVAR), discrimination of endoleaks and intra-aneurysmatic calcifications within the aneurysm often requires multiphase computed tomography (CT). Spectral photon-counting CT (SPCCT) in combination with a two-contrast agent injection protocol may provide reliable detection of endoleaks with a single CT acquisition.
Methods: To evaluate the feasibility of SPCCT, the stent-lined compartment of an abdominal aortic aneurysm phantom was filled with a mixture of iodine and gadolinium mimicking enhanced blood.
Spectral photon counting computed tomography (SPCCT) is an emerging medical imaging technology. SPCCT scanners record the energy of incident photons, which allows specific detection of contrast agents due to measurement of their characteristic X-ray attenuation profiles. This approach is known as K-edge imaging.
View Article and Find Full Text PDFA new prototype spectral photon-counting computed tomography (SPCCT) based on a modified clinical CT system has been developed. SPCCT analysis of the energy composition of the transmitted x-ray spectrum potentially allows simultaneous dual contrast agent imaging, however, this has not yet been demonstrated with such a system. We investigated the feasibility of using this system to distinguish gold nanoparticles (AuNP) and an iodinated contrast agent.
View Article and Find Full Text PDFAn X-ray grating interferometer (GI) suitable for clinical mammography must comply with quite strict dose, scanning time and geometry limitations, while being able to detect tumors, microcalcifications and other abnormalities. Such a design task is not straightforward, since obtaining optimal phase-contrast and dark-field signals with clinically compatible doses and geometrical constraints is remarkably challenging. In this work, we present a wave propagation based optimization that uses the phase and dark-field sensitivities as figures of merit.
View Article and Find Full Text PDFPurpose To investigate the feasibility of using spectral photon-counting computed tomography (CT) to differentiate between gadolinium-based and nonionic iodine-based contrast material in a colon phantom by using the characteristic k edge of gadolinium. Materials and Methods A custom-made colon phantom was filled with nonionic iodine-based contrast material, and a gadolinium-filled capsule representing a contrast material-enhanced polyp was positioned on the colon wall. The colon phantom was scanned with a preclinical spectral photon-counting CT system to obtain spectral and conventional data.
View Article and Find Full Text PDFPurpose: An analytic Fourier approach to predict the expected number of counts registered in a photon-counting detector subject to pulse pile-up for arbitrary photon flux, detector response function, and pulse-shape is presented. The analysis provides a complete forward model for energy-sensitive, photon-counting x-ray detectors for spectral computed tomography.
Methods: The formalism of the stochastic theory of the expected frequency of level crossings of shot noise processes is applied to the pulse pile-up effect and build on a recently published analytic Fourier representation of the level crossing frequency of shot noise processes with piece-wise continuous kernels with jumps.
Purpose: The purpose of this work is to investigate the feasibility of grating-based, differential phase-contrast, full-field digital mammography (FFDM) in terms of the requirements for field-of-view (FOV), mechanical stability, and scan time.
Methods: A rigid, actuator-free Talbot interferometric unit was designed and integrated into a state-of-the-art x-ray slit-scanning mammography system, namely, the Philips MicroDose L30 FFDM system. A dedicated phase-acquisition and phase retrieval method was developed and implemented that exploits the redundancy of the data acquisition inherent to the slit-scanning approach to image generation of the system.
Objectives: The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS).
Materials And Methods: All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands.
Philos Trans A Math Phys Eng Sci
March 2014
Research in grating-based differential phase-contrast imaging (DPCI) has gained increasing momentum in the past couple of years. The first results on the potential clinical benefits of the technique for X-ray mammography are becoming available and indicate improvements in terms of general image quality, the delineation of lesions versus the background tissue and the visibility of microcalcifications. In this paper, we investigate some aspects related to the technical feasibility of DPCI for human X-ray mammography.
View Article and Find Full Text PDFContrast Media Mol Imaging
September 2014
Recent developments in spectral CT systems featuring binned photon-counting detector technology have enabled an imaging concept on a pre-clinical level that has been coined K-edge imaging. This exciting concept allows the selective and quantitative imaging of contrast media by exploiting the K-edge discontinuity in the photo-electric component of X-ray absorption. An ideal application for K-edge imaging is CT imaging of target-specific and conventional contrast agents that have been designed to be spectral-CT-visible.
View Article and Find Full Text PDFObjectives: Differential phase contrast and scattering-based x-ray mammography has the potential to provide additional and complementary clinically relevant information compared with absorption-based mammography. The purpose of our study was to provide a first statistical evaluation of the imaging capabilities of the new technique compared with digital absorption mammography.
Materials And Methods: We investigated non-fixed mastectomy samples of 33 patients with invasive breast cancer, using grating-based differential phase contrast mammography (mammoDPC) with a conventional, low-brilliance x-ray tube.
IEEE Trans Med Imaging
July 2013
Photon-counting detector technology has enabled the first experimental investigations of energy-resolved computed tomography (CT) imaging and the potential use for K-edge imaging. However, limitations in regards to detecter technology have been imposing a limit to effective count rates. As a consequence, this has resulted in high noise levels in the obtained images given scan time limitations in CT imaging applications.
View Article and Find Full Text PDFSpectral CT is the newest advancement in CT imaging technology, which enhances traditional CT images with the capability to image and quantify certain elements based on their distinctive K-edge energies. K-edge imaging feature recognizes high accumulations of targeted elements and presents them as colorized voxels against the normal grayscale X-ray background offering promise to overcome the relatively low inherent contrast within soft tissue and distinguish the high attenuation of calcium from contrast enhanced targets. Towards this aim, second generation gold nanobeacons (GNB(2)), which incorporate at least five times more metal than the previous generation was developed.
View Article and Find Full Text PDFPurpose: Gold nanoparticles (gold-NPs) have lately been proposed as alternative contrast agents to iodine-based contrast agents (iodine-CA) for computed tomography (CT) angiography. The aims of this study were to confirm an appropriate environment in which to evaluate such novel contrast agents, to investigate the comparative contrast of iodine-CA versus gold-NP, and to determine optimal scanning parameters for gold-NP.
Materials And Methods: Three different clinical scanners were used to acquire CT images.
We report a novel molecular imaging agent based on ytterbium designed for use with spectral "multicolor" computed tomography (CT). Spectral CT or multicolored CT provides all of the benefits of traditional CT, such as rapid tomographic X-ray imaging, but in addition, it simultaneously discriminates metal-rich contrast agents based on the element's unique X-ray K-edge energy signature. Our synthetic approach involved the use of organically soluble Yb(III) complex to produce nanocolloids of Yb of noncrystalline nature incorporating a high density of Yb (>500K/nanoparticle) into a stable metal particle.
View Article and Find Full Text PDFPurpose: The recent introduction of a specific electronic readout chip, designed for the processing of the same signal pulses from an x-ray sensor in one integrating and one counting channel in each pixel E. Kraft et al., [IEEE Trans.
View Article and Find Full Text PDFPurpose: The purpose of this work is to combine two areas of active research in tomographic x-ray imaging. The first one is the use of iterative reconstruction (IR) techniques. The second one is differential phase contrast imaging (DPCI).
View Article and Find Full Text PDFObjectives: Phase-contrast and scattering-based x-ray imaging are known to provide additional and complementary information to conventional, absorption-based methods, and therefore have the potential to play a crucial role in medical diagnostics. We report on the first mammographic investigation of 5 native, that is, freshly dissected, breasts carried out with a grating interferometer and a conventional x-ray tube source. Four patients in this study had histopathologically proven invasive breast cancer.
View Article and Find Full Text PDFPurpose: To investigate the properties of tomographic grating-based phase contrast imaging with respect to its noise power spectrum and the energy dependence of the achievable contrast to noise ratio.
Methods: Tomographic simulations of an object with 11 cm diameter constituted of materials of biological interest were conducted at different energies ranging from 25 to 85 keV by using a wave propagation approach. Using a Monte Carlo simulation of the x-ray attenuation within the object, it is verified that the simulated measurement deposits the same dose within the object at each energy.
IEEE Trans Med Imaging
September 2011
The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage.
View Article and Find Full Text PDF