Publications by authors named "Ewald Gingl"

Background: The aim of this post hoc analysis of data from the Austrian subpopulation of the EDGE study was the evaluation of the effectiveness and tolerability of vildagliptin as an add-on to an existing oral antidiabetic (OAD) monotherapy versus a combination therapy with two OADs without vildagliptin in patients with inadequately controlled type 2 diabetes.

Patients And Methods: In Austria, 422 patients were included. In the framework of regular visits (at baseline, about once per quarter, and at the study end, after 12 months), adverse events (AEs), courses, and changes of therapy were recorded.

View Article and Find Full Text PDF

Agonists at μ-opioid receptors (MORs) represent the gold standard for the treatment of severe pain. A key element of opioid analgesia is the depression of nociceptive information at the first synaptic relay in spinal pain pathways. The underlying mechanisms are, however, largely unknown.

View Article and Find Full Text PDF

In Drosophila, Pumilio (Pum) is important for neuronal homeostasis as well as learning and memory. We have recently characterized a mammalian homolog of Pum, Pum2, which is found in discrete RNA-containing particles in the somatodendritic compartment of polarized neurons. In this study, we investigated the role of Pum2 in developing and mature neurons by RNA interference.

View Article and Find Full Text PDF

mu-Opioid receptor (MOR) agonists represent the gold standard for the treatment of severe pain but may paradoxically also enhance pain sensitivity, that is, lead to opioid-induced hyperalgesia (OIH). We show that abrupt withdrawal from MOR agonists induces long-term potentiation (LTP) at the first synapse in pain pathways. Induction of opioid withdrawal LTP requires postsynaptic activation of heterotrimeric guanine nucleotide-binding proteins and N-methyl-d-aspartate receptors and a rise of postsynaptic calcium concentrations.

View Article and Find Full Text PDF

Adaptation controls the gain of the input-function of the cockroach's cold cell during slowly oscillating changes in temperature. When the oscillation period is long, the cold cell improves its gain for the rate of temperature change at the expense of its ability to code instantaneous temperature. When the oscillation period is brief, however, the cold cell reduces this gain and improves its sensitivity for instantaneous temperature.

View Article and Find Full Text PDF
Intracellular recording from a spider vibration receptor.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

May 2006

The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons.

View Article and Find Full Text PDF

A morphologically identifiable type of olfactory sensillum on the antenna of the American cockroach contains a pair of ON and OFF cells that responds oppositely to changes in the concentration of fruit odours. The odour of lemon oil was used to study the accuracy with which these cells can discriminate between rapid step-like, ramp-like and oscillating changes in odour concentration. The discharge rates of both cells are not only affected by the actual concentration at particular instants in time (instantaneous concentration) but also by the rate at which concentration changes.

View Article and Find Full Text PDF

A pair of antagonistic thermoreceptive cells is associated with each of two peg-in-pit sensilla located on the antennal tip of Aedes aegypti. One, the warm cell, responds to rapid warming with a sudden increase in the rate of discharge. The other, a cold cell, responds to rapid cooling with a sudden increase in the discharge rate.

View Article and Find Full Text PDF

GABAergic inhibition of mechanosensory afferent axon terminals is a widespread phenomenon in vertebrates and invertebrates. Spider mechanoreceptor neurons receive efferent innervation on their peripherally located axons, somata and sensory dendrites, and the dendrites have recently been shown to be excitable. Excitability of the spider sensory neurons is inhibited by muscimol and GABA, agonists of ionotropic GABA receptors.

View Article and Find Full Text PDF

Rapid responses to sensory stimulation are crucial for survival. This must be especially true for mechanical stimuli containing temporal information, such as vibration. Sensory transduction occurs at the tips of relatively long sensory dendrites in many mechanoreceptors of both vertebrates and invertebrates, but little is known about the electrical properties of these crucial links between transduction and action potential generation.

View Article and Find Full Text PDF