Publications by authors named "Ewald A Terpetschnig"

Molecular aggregates exhibit emergent properties, including the collective sharing of electronic excitation energy known as exciton delocalization, that can be leveraged in applications such as quantum computing, optical information processing, and light harvesting. In a previous study, we found unexpectedly large excitonic interactions (quantified by the excitonic hopping parameter ) in DNA-templated aggregates of squaraine (SQ) dyes with hydrophilic-imparting sulfo and butylsulfo substituents. Here, we characterize DNA Holliday junction (DNA-HJ) templated aggregates of an expanded set of SQs and evaluate their optical properties in the context of structural heterogeneity.

View Article and Find Full Text PDF

Molecular (dye) aggregates are a materials platform of interest in light harvesting, organic optoelectronics, and nanoscale computing, including quantum information science (QIS). Strong excitonic interactions between dyes are key to their use in QIS; critically, properties of the individual dyes govern the extent of these interactions. In this work, the electronic structure and excited-state dynamics of a series of indolenine-based squaraine dyes incorporating dimethylamino (electron donating) and/or nitro (electron withdrawing) substituents, so-called asymmetric dyes, were characterized.

View Article and Find Full Text PDF

While only one enantiomer of chiral biomolecules performs a biological function, access to both enantiomers (or enantiomorphs) proved to be advantageous for technology. Using dye covalent attachment to a DNA Holliday junction (HJ), we created two pairs of dimers of bis(chloroindolenine)squaraine dye that enabled strongly coupled molecular excitons of opposite chirality in solution. The exciton chirality inversion was achieved by interchanging single covalent linkers of unequal length tethering the dyes of each dimer to the HJ core.

View Article and Find Full Text PDF

Control over the strength of excitonic coupling in molecular dye aggregates is a substantial factor for the development of technologies such as light harvesting, optoelectronics, and quantum computing. According to the molecular exciton model, the strength of excitonic coupling is inversely proportional to the distance between dyes. Covalent DNA templating was proved to be a versatile tool to control dye spacing on a subnanometer scale.

View Article and Find Full Text PDF

Molecular excitons play a central role in natural and artificial light harvesting, organic electronics, and nanoscale computing. The structure and dynamics of molecular excitons, critical to each application, are sensitively governed by molecular packing. Deoxyribonucleic acid (DNA) templating is a powerful approach that enables controlled aggregation via sub-nanometer positioning of molecular dyes.

View Article and Find Full Text PDF

Molecular excitons play a central role in natural and artificial light harvesting, organic electrònics, and nanoscale computing. The structure and dynamics of molecular excitons, critical to each application, are sensitively governed by molecular packing. Deoxyribonucleic acid (DNA) templating is a powerful approach that enables controlled aggregation via sub-nanometer positioning of molecular dyes.

View Article and Find Full Text PDF

Exciton delocalization plays a prominent role in the photophysics of molecular aggregates, ultimately governing their particular function or application. Deoxyribonucleic acid (DNA) is a compelling scaffold in which to template molecular aggregates and promote exciton delocalization. As individual dye molecules are the basis of exciton delocalization in molecular aggregates, their judicious selection is important.

View Article and Find Full Text PDF

A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules.

View Article and Find Full Text PDF

Intermolecular time-resolved and single-molecule Förster resonance energy transfer (FRET) have been applied to detect quantitatively the aggregation of polycationic protein lysozyme (Lz) in the presence of lipid vesicles composed of phosphatidylcholine (PC) and its mixture with 5, 10, 20, or 40 mol % of phosphatidylglycerol (PG) (PG5, PG10, PG20, or PG40, respectively). Upon binding to PC, PG5, or PG10 model membranes, Lz was found to retain its native monomeric conformation, while increasing content of anionic lipid up to 20 or 40 mol % resulted in the formation of Lz aggregates. The structural parameters of protein self-association (the degree of oligomerization, the distance between the monomers in protein assembly, and the fraction of donors present in oligomers) have been derived.

View Article and Find Full Text PDF

Commercially available, near-infrared fluorescent squaraine dyes (Seta-635 and Seta-670) were covalently bound to antibodies and employed insurface enhanced immunoassay. From fluorescence intensity and lifetime changes determined for a surface which had been coated with silver nanoparticles as well as a non-coated glass surface, both labelled compounds exhibited a 15 to 20-fold enhancement of fluorescence on the silver coated surface compared to that achieved on the non-coated surface. In addition, the fluorescence lifetime changes drastically for both labels in the case of silver-coated surfaces.

View Article and Find Full Text PDF

We describe the photophysical properties of Seta-633, a commercially available near-infrared (NIR) dye, and its use as a fluorescent label to study the interaction between low-molecular-weight analytes and proteins using fluorescence lifetime as the readout parameter. In a model assay, we demonstrate that a biotinylated Seta-633 tracer binds to antibiotin with high specificity. Importantly, the lifetime of Seta-633-biotin increases about 1.

View Article and Find Full Text PDF

We describe the spectral properties of an amine-reactive, pH-sensitive, long-wavelength ratiometric fluorescent label having a pK(a) in the physiological pH range. The label exhibits its main absorption and emission in the near-infrared (NIR) region. On deprotonation, a blue shift of the excitation maximum is observed.

View Article and Find Full Text PDF

Advancements in single molecule detection (SMD) continue to unfold powerful ways to study the behavior of individual and complex molecular systems in real time. SMD enables the characterization of complex molecular interactions and reveals basic physical phenomena underlying chemical and biological processes. We present here a systematic study of the quenching efficiency of Förster-type energy-transfer (FRET) for multiple fluorophores immobilized on a single antibody.

View Article and Find Full Text PDF

A series of ring-substituted squaraines absorbing and emitting in the red and NIR spectral region was synthesized and their spectral and photophysical properties (quantum yields, fluorescence lifetimes) and photostabilities were measured and compared to Cy5, a commonly used fluorescent label. The absorption maxima in aqueous media were found to be between 628 and 667 nm and the emission maxima are between 642 and 685 nm. Squaraine dyes exhibit high extinction coefficients (163,000-265,000 M(-1) cm(-1)) and lower quantum yields (2-7%) in aqueous buffer but high quantum yields (up to 45%) and long fluorescence lifetimes (up to 3.

View Article and Find Full Text PDF

The applicability of the two newly commercial available squaraine labels Square-670-NHS and Seta-635-NHS to exploring protein-lipid interactions has been evaluated. The labels were conjugated to lysozyme (Lz) (squaraine-lysozyme conjugates below referred to as Square-670-Lz and Seta-635-Lz), a structurally well-characterized small globular protein displaying the ability to interact both, electrostatically and hydrophobically with lipids. The lipid component of the model systems was represented by lipid vesicles composed of zwitterionic lipids egg yolk phosphatidylcholine (PC) and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and their mixtures with anionic lipids either beef heart cardiolipin (CL) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), respectively.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: