Hydrogen peroxide (HO) finds extensive applications in various industries, particularly in the environmental field. The photocatalytic production of HO through the oxygen reduction reaction (ORR) or the water oxidation reaction (WOR) offers a promising approach. However, several challenges hinder effective on-site production, such as the rapid electron-hole pair recombination, inefficient visible light utilization, and limited selectivity in HO formation.
View Article and Find Full Text PDFIn this study, we employed the response surface method (RSM) and the long short-term memory (LSTM) model to optimize operational parameters and predict chemical oxygen demand (COD) removal in the electrocoagulation-catalytic ozonation process (ECOP) for pharmaceutical wastewater treatment. Through RSM simulation, we quantified the effects of reaction time, ozone dose, current density, and catalyst packed rate on COD removal. Then, the optimal conditions for achieving a COD removal efficiency exceeding 50% were identified.
View Article and Find Full Text PDFIron-based biochar exhibits great potential in degrading emerging pollutants and remediation of water environments. In this study, a highly efficient catalytic Fe/biochar (MZB-800) was synthesized by the co-pyrolysis of poplar sawdust and KFeO at 800 °C. A novel water purification technology of pre-reduction followed by PMS activation for MZB-800 was proposed to degrade the refractory 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide.
View Article and Find Full Text PDFCatalytic ozonation is an effective wastewater purification process. However, the low ozone mass transfer in packed bubble columns leads to low ozone utilization efficiency (OUE), poor organic degradation performance, and high energy consumption. Therefore, there is an urgent need to develop efficient supported catalysts that can enhance mass transfer and performance.
View Article and Find Full Text PDFBackground: Cystic fibrosis (CF) patients require regular airway clearance therapy (ACT). The aim of this study was to evaluate homecare therapeutic effects of a new ACT (Simeox) added to the optimal standard of care, including home chest physiotherapy, in the treatment of clinically stable children.
Methods: Forty pediatric CF patients (8-17 years old) with stable disease were randomized 1:1 in a single-center, prospective, open-label, cross-over trial into two groups: with or without Simeox.
An efficient in-situ self-cleaning catalytic ceramic-membrane tailored with MnO-CoO nanoparticles (Mn-Co-CM) was fabricated. Density functional theory calculations result substantiated that molecular ozone could be effectively adsorbed by oxygen vacancies (OV) on the Mn-Co-CM surface and then direct activated into a surface-bound atomic oxygen (*O) and a peroxide (*O), ultimately producing OH. Mn-Co-CM coupling with ozone efficiently removed foulants from the permeate and the membrane surface simultaneously and leading to in-situ formation of OH that changed the nature of the irreversible foulants and ultimately resulted in the rapid release and degradation of humic acid-like substances causing irreversible fouling.
View Article and Find Full Text PDFThis review renewed insight into the existing complex and contradictory mechanisms of catalytic ozonation by two-dimensional layered carbon-based materials (2D-LCMs) for degradation toxic refractory organics in aqueous solution. Migration and capture of active electrons are central to catalytic ozonation reactions, which was not studied or reviewed more clearly. Based on this perspective, the catalytic ozonation potential of 2D-LCMs synthesized by numerous methods is firstly contrasted to guide the design of subsequent carbon based-catalysts, and not limited to 2D-LCMs.
View Article and Find Full Text PDFIn recent years, the growing interest in applying photoelectrocatalysis (PEC) to decompose organic pollutants has resulted in the need to search for new photoelectrode materials with high activity under visible light radiation. The presented research showed an increased photoelectrocatalytic activity under sunlight of Ti/TiO sensitized with SnS quantum dots, obtained by the successive ionic layer adsorption and reaction (SILAR) method. The presence of SnS caused the enhanced absorption of visible irradiation and the reduction of recombination of generated charges by a p-n heterojunction created with the TiO.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs that play a pivotal role in the regulation of plant development and responses to the surrounding environment. Despite the efforts made to elucidate their function in the adaptation of plants to many abiotic and biotic stresses, their role in high light (HL) stress is still vague. HL stress often arises upon plant exposure to full sunlight.
View Article and Find Full Text PDFIn this study, carbamazepine (CBZ) decay in solution has been studied by coupling electrocoagulation with electro-Fenton (EC-EF) with a novel P-rGO/carbon felt (CF) cathode, aiming to accelerate the in-situ generation of •OH, instead of adding Fe and HO. Firstly, the fabricated P-rGO and its derived cathode were characterized by XRD, SEM, AFM, XPS and electrochemical test (EIS, CV and LSV). Secondly, it was confirmed that the performance in removal efficiency and electric energy consumption (EEC) by EC-EF (k=0.
View Article and Find Full Text PDFElectrochemical oxidation (EO) of organic compounds and ammonium in the complex matrix of landfill leachates (LLs) was investigated using three different boron-doped diamond electrodes produced on silicon substrate (BDD/Si)(levels of boron doping [B]/[C] = 500, 10,000, and 15,000 ppm-0.5 k; 10 k, and 15 k, respectively) during 8-h tests. The LLs were collected from an old landfill in the Pomerania region (Northern Poland) and were characterized by a high concentration of N-NH (2069 ± 103 mg·L), chemical oxygen demand (COD) (3608 ± 123 mg·L), high salinity (2690 ± 70 mg Cl·L, 1353 ± 70 mg SO·L), and poor biodegradability.
View Article and Find Full Text PDFOne of the challenges in research into photoelectrocatalytic (PEC) degradation of pollutants is finding the appropriate photoanode material, which has a significant impact on the process efficiency. Among all others, photoelectrodes based on an ordered TiO nanotube arrays are a promising material due to well-developed surface area and efficient charge separation. To increase the PEC activity of this material, the SILAR method was used to decorate Ti/TiO nanotubes by PbS quantum dots (QD).
View Article and Find Full Text PDFThe recirculating split-flow batch reactor with a cell divided into anolyte and catholyte compartments for oxidation mixture of cytostatic drugs (CD) was tested. In this study, kinetics and mechanisms of electrochemical oxidization of two mixtures: 5-FU/CP and IF/CP were investigated. The order of the CD degradation rate in single drug solutions and in mixtures was found to be 5-FU < CP < IF.
View Article and Find Full Text PDFThe efficient and safe degradation of drugs present in wastewater requires the design of a new material possessing high activity for that process. In addition to other methods, photoelectrocatalysis (PEC) merges the strengths of both photocatalytic and electrochemical methods, and the efficiency could be enhanced by the type of photoelectrode material. To address this challenge, three Ti/TiO nanotube-based photoelectrodes, differing in their tube morphology, were prepared by anodic oxidation and employed for the degradation of the 5-fluorouracil (5-FU) drug by the PEC process.
View Article and Find Full Text PDFIn the presented study, electrochemical oxidation of five anticancer drugs (5-fluorouracil (5-FU), ifosfamide (IF), cyclophosphamide (CF), methotrexate (MTX), imatinib (IMB)) using boron doped diamond (BDD) electrode was investigated. In the first step the operating parameters of electrolysis were optimized. Studies have demonstrated a significant influence of applying current density, temperature, pH of solution and initial concentration of 5-FU on the process efficiency.
View Article and Find Full Text PDFIn the post-genomic era the availability of genomic tools and resources is leading us to novel generation methods in plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. In this study we have mainly concentrated on the Cucumis sativus and (but much less) Cucurbitaceae family several important vegetable crops. There are many reports on research conducted in Cucurbitaceae plant breeding programs on the ripening process, phloem transport, disease resistance, cold tolerance and fruit quality traits.
View Article and Find Full Text PDFWild Cucumis species have been divided into Australian/Asian and African groups using morphological and phylogenetic characteristics, and new species have been described recently. No molecular cytogenetic information is available for most of these species. The crossability between 5 southern African Cucumis species (C.
View Article and Find Full Text PDFA possibility of using clay waste rocks (shales) from coal mines in the removal of heavy metals from industrial wastewaters is considered in this paper. Raw and calcined (600 °C) shales accompanying the coal beds in two Polish coal mines were examined with respect to their adsorptive capabilities for Pb, Ni and Cu ions. The mineralogical composition of the shales was determined and the TG/DTG analysis was carried out.
View Article and Find Full Text PDFFluoroquinolones are widely used anti-bacterial agents that are known to exhibit moderate to severe phototoxicity. Furthermore some of them reveal photogenotoxicity under UV irradiation. Incidence of side effects due to light exposure may be augmented, if the medicament is used topically.
View Article and Find Full Text PDFRumination is intrusive, perseverative cognition. We suggest that one psychological consequence of ruminating about negative emotional events is that the events feel as though they happened metaphorically "just yesterday". Results from three studies showed that ruminating about real world anger provocations, guilt-inducing events, and sad times in the last year made these past events feel as though they happened more recently.
View Article and Find Full Text PDFCucumis metuliferus (2n = 24) is a cultivated species of the Cucumis genus which is a potential genetic resource for Cucumis crops. Although some cytogenetic research has been reported, there is no study of karyotyping in this species. Here, we used 4',6-diamidino-2-phenylindole and chromomycin A3 staining to identify 12 pairs of chromosomes in early-metaphase cells.
View Article and Find Full Text PDFThe investigation dealt with electrochemical oxidation of five sulfonamides (SNs): sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMN) and sulfadimethoxine (SDM) in aqueous solution at boron-doped diamond (BDD) electrode. All studied sulfonamides were degraded according to a pseudo first order kinetics. The structure of SNs had no significant effect on the values of pseudo first order rate constants.
View Article and Find Full Text PDFPurpose: The aim was to investigate the effect of iron or combined iron/zinc supplementation on rat liver antioxidant status.
Methods: The 6-week male Wistar rats were examined in 3 stages: (1) 4-week adaptation to the diets (C-control AIN-93M diet, D-iron deficient and R-with 50% reduction in all vitamin and mineral amounts); (2) 4-week supplementation with the same regimen enriched with tenfold more iron or iron/zinc; (3) 2-week post-supplementation period (the same diets as in the stage I).
Results: Combined iron/zinc supplementation similarly to iron supplementation alone significantly (p values ≤ 0.
Cucumber (Cucumis sativus L.), a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g.
View Article and Find Full Text PDF