Loss of function mutations in the α3 or α4 chain of type IV collagen cause Alport nephropathy, characterized by progressive glomerulosclerosis. While studying the mechanisms that determine disease progression, we found that the evolution of kidney disease in Col4a3-deficient mice was associated with an influx of immune cell subsets including nonactivated macrophages. This suggested that intrarenal inflammation might accelerate Alport nephropathy.
View Article and Find Full Text PDFWhat are the molecular mechanisms of bacterial infections triggering or modulating lupus nephritis? In nephritic MRL(lpr/lpr) mice, transient exposure to bacterial cell wall components such as lipopeptide or lipopolysaccharide (LPS) increased splenomegaly, the production of DNA autoantibodies, and serum interleukin (IL)-6, IL-12 and tumour necrosis factor (TNF) levels, and aggravated lupus nephritis. Remarkably, bacterial lipopeptide induced massive albuminuria in nephritic but not in non-nephritic mice. This was associated with down-regulation of renal nephrin mRNA and redistribution from its normal localization at foot processes to the perinuclear podocyte area in nephritic MRL(lpr/lpr) mice.
View Article and Find Full Text PDFLack of the alpha3 or alpha4 chain of type IV collagen (COL4) causes autosomal recessive Alport nephropathy in humans and mice that is characterized by progressive glomerulosclerosis and tubulointerstitial disease. Renal pathology is associated with chemokine-mediated macrophage infiltrates but their contribution to the progression of Alport nephropathy is unclear. We found Ccl2 to be expressed in increasing amounts during the progression of nephropathy in Col4a3-deficient mice; hence, we blocked Ccl2 with anti-Ccl2 Spiegelmers, biostable L-enantiomeric RNA aptamers suitable for in vivo applications.
View Article and Find Full Text PDFDiabetic kidney disease is associated with monocyte chemoattractant CC chemokine ligand 2 (CCL2)-dependent glomerular and interstitial macrophage recruitment. In addition, nephropathy is delayed in Ccl2 mutant diabetic mice. However, whether the late onset of therapeutic Ccl2 blockade modulates the progression of advanced diabetic nephropathy remains unknown.
View Article and Find Full Text PDFHuman Alport disease is caused by a lack of the alpha3-, 4-, or 5-chain of type IV collagen (COL4A). Affected humans and COL4A3-deficient mice develop glomerulosclerosis and progressive renal fibrosis in the presence of interstitial macrophages, but their contribution to disease progression is under debate. This question was addressed by treating COL4A3-deficient mice with BX471, an antagonist of chemokine receptor 1 (CCR1) that is known to block interstitial leukocyte recruitment.
View Article and Find Full Text PDF