Publications by authors named "Ewa Niewiadomska-Szynkiewicz"

This paper addresses issues concerning biometric authentication based on handwritten signatures. Our research aimed to check whether a handwritten signature acquired with a mobile device can effectively verify a user's identity. We present a novel online signature verification method using coordinates of points and pressure values at each point collected with a mobile device.

View Article and Find Full Text PDF

Navigation lies at the core of social robotics, enabling robots to navigate and interact seamlessly in human environments. The primary focus of human-aware robot navigation is minimizing discomfort among surrounding humans. Our review explores user studies, examining factors that cause human discomfort, to perform the grounding of social robot navigation requirements and to form a taxonomy of elementary necessities that should be implemented by comprehensive algorithms.

View Article and Find Full Text PDF

The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security.

View Article and Find Full Text PDF

Intelligent wireless networks that comprise self-organizing autonomous vehicles equipped with punctual sensors and radio modules support many hostile and harsh environment monitoring systems. This work's contribution shows the benefits of applying such networks to estimate clouds' boundaries created by hazardous toxic substances heavier than air when accidentally released into the atmosphere. The paper addresses issues concerning sensing networks' design, focussing on a computing scheme for online motion trajectory calculation and data exchange.

View Article and Find Full Text PDF

Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal.

View Article and Find Full Text PDF