Publications by authors named "Ewa Marszal"

α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy.

View Article and Find Full Text PDF

Peginesatide (Omontys(®); Affymax, Inc., Cupertino, CA) was voluntarily withdrawn from the market less than a year after the product launch. Although clinical trials had demonstrated the drug to be safe and efficacious, 49 cases of anaphylaxis, including 7 fatalities, were reported not long after market introduction.

View Article and Find Full Text PDF

Aggregation is common in protein drug manufacture, and while the effects of protein particulates are under investigation, many techniques applicable for their characterization have been recently developed. Among the methods available to characterize and quantify protein aggregates, none is applicable over the full size range and different methods often give conflicting results. The studies presented here compare two such methods: dynamic light scattering (DLS) and resonant mass measurement (RMM).

View Article and Find Full Text PDF

Particles in protein therapeutics and concerns for a potential correlation with product immunogenicity are increasingly becoming the focus of recent publications and scientific forums. The consensus of academic, industrial, and regulatory scientists is that this area is not well understood and will require in-depth research because of the potential impact on the product safety and efficacy. This commentary presents a summary of the 1-day workshop entitled "Predictive Science of the Immunogenicity Aspects of Particles in Biopharmaceutical Products," which discussed the current state of analytical resources for quantitation and characterization of protein aggregates and potential paths for developing predictive preclinical tools.

View Article and Find Full Text PDF

This meeting was successful in achieving its main goals: (1) summarize currently available information on the origin, detection, quantification and characterization of sub-visible particulates in protein products, available information on their clinical importance, and potential strategies for evaluating and mitigating risk to product quality, and (2) foster communication among academic, industry, and regulatory scientists to define the capabilities of current analytical methods, to promote the development of improved methods, and to stimulate investigations into the impact of large protein aggregates on immunogenicity. There was a general consensus that a considerable amount of interesting scientific information was presented and many stimulating conversations were begun. It is clear that this aspect of protein characterization is in its initial stages.

View Article and Find Full Text PDF

Serpins are a family of structurally homologous proteins having metastable native structures. As a result, a serpin variant destabilized by mutation(s) has a tendency to undergo conformational changes leading to inactive forms, e.g.

View Article and Find Full Text PDF

Patients homozygous for the Z mutant form of alpha1-proteinase inhibitor (alpha1-PI) have an increased risk for the development of liver disease because of the accumulation in hepatocytes of inclusion bodies containing linear polymers of mutant alpha1-PI. The most widely accepted model of polymerization proposes that a linear, head-to-tail polymer forms by sequential insertion of the reactive center loop (RCL) of one alpha1-PI monomer between the central strands of the A beta-sheet of an adjacent monomer. This model derives primarily from two observations: peptides that are homologous with the RCL insert into the A beta-sheet of alpha1-PI monomer and this insertion prevents alpha1-PI polymerization.

View Article and Find Full Text PDF