Objective: Carbon monoxide (CO) modulates several physiological functions through activation of a cGMP-dependent pathway similar to that of nitric oxide (NO). Here we investigated the possible involvement of soluble guanylate cyclase in the anti-aggregatory effect of micromolar concentrations of CO released by a novel, water-soluble, CO releasing molecule (CORM) in human platelets.
Methods: Human platelet aggregation was induced by collagen or thrombin, and the effects of CO releasing molecule (CORM-3) and an NO donor on platelet aggregation were compared.
Recently, we have shown that some HMG-CoA reductase inhibitors (statins) induce immediate pleiotropic effects in vascular endothelium both in vivo and in vitro, to mention only PGI2-mediated thrombolysis in rats and NO-mediated endothelium-dependent vasodilation in guinea pig coronary circulation. Here we look whether immediate endothelial effect of statins is associated with mobilization of intracellular calcium ions [Ca2+]i in cultured bovine aortic endothelial cells (BAEC). We analyzed the effects of various statins (atorvastatin, cerivastatin, simvastatin, lovastatin and pravastatin at concentration of 10-30 microM) on [Ca2+]i in BAEC in comparison to responses induced by bradykinin (Bk) (10 nM), adenosine diphosphate (1 microM), acetylcholine (100 nM), adrenaline (10 microM), serotonin (10 microM) or calcium ionophore A 23187 (0.
View Article and Find Full Text PDFOur in vivo assay for thrombolysis consisted of recording the weight of platelet-rich thrombi adhering to a collagen strip that was superfused with arterial blood in extracorporal circulation of anaesthetised Wistar rats. Immediate thrombolysis occurred in response to intravenously administrated angiotensin-converting enzyme inhibitor (ACE-I) at non-hypotensive doses of 3-30 microg kg(-1) (captopril
Pediatr Pathol Mol Med
December 2002
Healthy vascular endothelium is a powerful generator of nitric oxide (NO), prostacyclin (PGI2), prostaglandin E2 (PGE2), and plasminogen activator (t-PA). These endothelial products protect vascular wall against aggression from activated blood platelets and leukocytes. In particular they protect against thrombosis, promote thrombolysis, maintain tissue perfusion, and inhibit remodeling of vascular and cardiac walls.
View Article and Find Full Text PDF