Publications by authors named "Ewa Kwasniewicz"

Dynamic change in subcellular localization of signaling proteins is a general concept that eukaryotic cells evolved for eliciting a coordinated response to stimuli. Mass spectrometry-based proteomics in combination with subcellular fractionation can provide comprehensive maps of spatio-temporal regulation of protein networks in cells, but involves laborious workflows that does not cover the phospho-proteome level. Here we present a high-throughput workflow based on sequential cell fractionation to profile the global proteome and phospho-proteome dynamics across six distinct subcellular fractions.

View Article and Find Full Text PDF

We identified apolipoprotein E (ApoE) as one of the proteins that are found in complex with complement component C4d in pooled synovial fluid of rheumatoid arthritis (RA) patients. Immobilized human ApoE activated both the classical and the alternative complement pathways. In contrast, ApoE in solution demonstrated an isoform-dependent inhibition of hemolysis and complement deposition at the level of sC5b-9.

View Article and Find Full Text PDF

One of the aims of the EU-funded Research and Innovation Action (RIA), titled "Ageing with Elegans" (AwE) is to enhance better understanding of the factors causing health and disease in aging and develop evidence-based preventive, diagnostic, therapeutic, and other strategies. The work package-5 of this project is focused on testing the effects of phytochemicals of natural and synthetic origin on aging, longevity, and health of human cells , after the initial screening using the animal model systems of nematodes and rats and mice. Accordingly, the first series of three compounds, rosmarinic acid (ROSM), ampelopsin (AMPEL), and amorfrutin-A (AMOR), were selected to test for their short-term and long-term effects on human skin fibroblasts undergoing aging and senescence The lifelong modulatory effects of these compounds were tested individually at two doses (0.

View Article and Find Full Text PDF

Methyltransferase DNMT2 is suggested to be involved in the regulation of numerous processes, however its biological significance and underlying molecular mechanisms remain elusive. In the present study, we have used WI-38 and BJ human fibroblasts as an in vitro model system to investigate the effects of siRNA-based DNMT2 silencing. DNMT2-depleted cells were found to be sensitive to oxidative stress conditions as judged by increased production of reactive oxygen species and susceptible to DNA damage that resulted in the inhibition of cell proliferation.

View Article and Find Full Text PDF

The aim of this study was to identify molecules that trigger complement activation in rheumatic joints. C4d, the final cleavage product of C4 activation, is found in the diseased joint and can bind covalently to complement-activating molecules. By using a highly specific Ab against a cleavage neoepitope in C4d, several molecules that were specifically bound to C4d were identified from pooled synovial fluid (SF) from four rheumatoid arthritis (RA) patients.

View Article and Find Full Text PDF

Plant-derived pentacyclic triterpenotids with multiple biological activities are considered as promising candidates for cancer therapy and prevention. However, their mechanisms of action are not fully understood. In the present study, we have analyzed the effects of low dose treatment (5-20 µM) of ursolic acid (UA) and betulinic acid (BA) on breast cancer cells of different receptor status, namely MCF-7 (ER, PR, HER2), MDA-MB-231 (ER, PR, HER2) and SK-BR-3 (ER, PR, HER2).

View Article and Find Full Text PDF

Dnmt2 is a highly conserved methyltransferase of uncertain biological function(s). As Dnmt2 was considered as a driver of fruit fly longevity and a modulator of stress response, we decided to evaluate the role of Dnmt2 during stress-induced premature senescence in NIH3T3 mouse fibroblasts. Stable knockdown of Dnmt2 resulted in hydrogen peroxide-mediated sensitivity and apoptosis, whereas in the control conditions, senescence was induced.

View Article and Find Full Text PDF

Relatively low bioavailability of plant-derived nutraceuticals with anticancer properties may limit their usefulness for prevention and therapy of cancer. In the present study, we have screened for nutraceuticals (n=30) that would act at low micromolar range against phenotypically distinct breast cancer cell lines, namely MCF-7 (ER, PR, HER2), MDA-MB-231 (ER, PR, HER2) and SK-BR-3 (ER, PR, HER2), and diosmin, a citrus fruit flavonoid belonging to a flavone subclass, was selected. MCF-7 cell line was found to be the most sensitive to diosmin treatment.

View Article and Find Full Text PDF