Publications by authors named "Ewa Kurczynska"

Immunohistochemistry is a method that allows the detection of individual components of cell walls in an extremely precise way at the level of a single cell and wall domains. The cell wall antibodies detect specific epitopes of pectins, arabinogalactan proteins (AGP), hemicelluloses, and extensins. The presented method visualization of the selected pectic and AGP epitopes using antibodies directed to wall components is described.

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is a process that scientists have been trying to understand for many years because, on the one hand, it is a manifestation of the totipotency of plant cells, so it enables the study of the mechanisms regulating this process, and, on the other hand, it is an important method of plant propagation. Using SE in basic research and in practice is invaluable. This article describes the latest, but also historical, information on changes in the chemical composition of the cell wall during the transition of cells from the somatic to embryogenic state, and the importance of symplasmic communication during SE.

View Article and Find Full Text PDF

Although the influence of nanoparticles (NPs) on developmental processes is better understood, little is known about their impact on somatic embryogenesis (SE). This process involves changes in the direction of cell differentiation. Thus, studying the effect of NPs on SE is essential to reveal their impact on cell fate.

View Article and Find Full Text PDF

A rhodamine B (RhB)-based initiator for atom transfer radical polymerization (ATRP) was synthesized and applied for preparation of poly(2-trimethylammoniumethyl methacrylate) (PChMA), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-trimethylsilyloxyethyl methacrylate) (PHEMATMS). Polymer fluorescence was confirmed by determination of quantum yield by comparative method with piroxicam as the standard exhibiting dependency of emission intensity on the polymer chain hydrophilicity and the kind of solvent. The RhB functionalized polymers were used for biological tests in plant materials except for RhB-PHEMATMS because of weak fluorescence.

View Article and Find Full Text PDF

Plasmodesmata (PD), discovered more than 120 years ago, are still a mystery about their role in regulating plant cell differentiation. Research in recent years has verified our idea about the structure of PD and their function in the exchange of information between cells of the plant body. The involvement of PD in the movement of proteins, including transcription factors, hormones, and various types of RNA, indicates that they play an important role in regulating cell differentiation.

View Article and Find Full Text PDF

Plasmodesmata (PD) are membraneous channels that span cell walls of adjacent cells to establish the symplasm. These connections are unique to plants and enable the cell-to-cell exchange of information via the symplasm. However, not every plant cell is connected to its neighbor.

View Article and Find Full Text PDF

Array tomography (AT) is a new high-throughput imaging method for high-resolution imaging of ultrastructure and for 3-D reconstruction of cells and organelles. Here, we describe the entire procedure for obtaining a spatial image of the distribution of plasmodesmata (PD). As example, the protocol is applied here to reconstruct the number and arrangement of PD between cells undergoing differentiation during Arabidopsis somatic embryogenesis.

View Article and Find Full Text PDF

The increased use of nanoparticles (NP) in different industries inevitably results in their release into the environment. In such conditions, plants come into direct contact with NP. Knowledge about the uptake of NP by plants and their effect on different developmental processes is still insufficient.

View Article and Find Full Text PDF

Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two paralogs in a model system and to reveal biochemical changes in the cell wall of knockout mutants.

View Article and Find Full Text PDF

Intercellular signaling during embryo patterning is not well understood and the role of symplasmic communication has been poorly considered. The correlation between the symplasmic domains and the development of the embryo organs/tissues during zygotic embryogenesis has only been described for a few examples, including Arabidopsis. How this process occurs during the development of somatic embryos (SEs) is still unknown.

View Article and Find Full Text PDF

Changes in the composition of the cell walls are postulated to accompany changes in the cell's fate. We check whether there is a relationship between the presence of selected pectic, arabinogalactan proteins (AGPs), and extensins epitopes and changes in cell reprogramming in order to answer the question of whether they can be markers accompanying changes of cell fate. Selected antibodies were used for spatio-temporal immunolocalization of wall components during the induction of somatic embryogenesis.

View Article and Find Full Text PDF

Enhanced channeling carbon through pathways: shikimate/chorismate, benzenoid-phenylopropanoid or 2-C-methyl-D-erythritol 4-phosphate (MEP) provides a multitude of secondary metabolites and cell wall components and allows plants response to environmental stresses. Through the biosynthetic pathways, different secondary metabolites, like tocopherols (TCs), are bind to mutual dependencies and metabolic loops, that are not yet fully understood. We compared, in parallel, the influence of α- and γ-TCs on metabolites involved in osmoprotective/antioxidative response, and physico-chemical modification of plasma membrane and cell wall.

View Article and Find Full Text PDF

In this report, we describe studies on symplasmic communication and cellular rearrangement during direct somatic embryogenesis (SE) in the tree fern Cyathea delgadii. We analyzed changes in the symplasmic transport of low-molecular-weight fluorochromes, such as 8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt (HPTS) and fluorescein (delivered to cells as fluorescein diacetate, FDA), within stipe explants and somatic embryos originating from single epidermal cells and developing during 16-d long culture. Induction of SE is preceded by a restriction in fluorochrome distribution between certain explant cells.

View Article and Find Full Text PDF

Differences in the composition and the structural organisation of the extracellular matrix correlate with the morphogenic competence of the callus tissue that originated from the isolated endosperm of kiwifruit. The chemical composition and structural organisation of the extracellular matrix, including the cell wall and the layer on its surface, may correspond with the morphogenic competence of a tissue. In the presented study, this relationship was found in the callus tissue that had been differentiated from the isolated endosperm of the kiwiberry, Actinidia arguta.

View Article and Find Full Text PDF

The suspensor in the majority of angiosperms is an evolutionally conserved embryonic structure functioning as a conduit that connects ovule tissues with the embryo proper for nutrients and growth factors flux. This is the first study serving the purpose of investigating the correlation between suspensor types and plasmodesmata (PD), by the ultrastructure of this organ in respect of its full development. The special attention is paid to PD in representatives of Crassulaceae genera: , , , and .

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses a particular plant model that is useful for breeding and studying bioenergy grasses, helping researchers tackle key questions in grass biology.
  • - It highlights the challenges in genetically transforming many grasses and notes that transformation techniques are crucial for advancing biological research.
  • - The review emphasizes recent findings on factors affecting transformation efficiency and suggests using this model to improve transformation in other difficult-to-genetically-modify monocot plants.
View Article and Find Full Text PDF

Cell-to-cell signalling is a major mechanism controlling plant morphogenesis. Transport of signalling molecules through plasmodesmata is one way in which plants promote or restrict intercellular signalling over short distances. Plasmodesmata are membrane-lined pores between cells that regulate the intercellular flow of signalling molecules through changes in their size, creating symplasmic fields of connected cells.

View Article and Find Full Text PDF

Phytosulfokine-α (PSK), a peptidyl plant growth factor, has been recognized as a promising intercellular signaling molecule involved in cellular proliferation and dedifferentiation. It was shown that PSK stimulated and enhanced cell divisions in protoplast cultures of several species leading to callus and proembryogenic mass formation. Since PSK had been shown to cause an increase in efficiency of somatic embryogenesis, it was reasonable to check the distribution of selected chemical components of the cell walls during the protoplast regeneration process.

View Article and Find Full Text PDF

Aluminum (Al) is one of the most important crust elements causing reduced plant production in acidic soils. Barley ( L.) is considered to be one of the crops that is most sensitive to Al, and the root cell wall is the primary target of Al toxicity.

View Article and Find Full Text PDF

Plants frequently encounter diverse abiotic stresses, one of which is environmental thermal stress. To cope with these stresses, plants have developed a range of mechanisms, including altering the cell wall architecture, which is facilitated by the arabinogalactan proteins (AGP) and extensins (EXT). In order to characterise the localisation of the epitopes of the AGP and EXT, which are induced by the stress connected with a low (4 °C) or a high (40 °C) temperature, in the leaves of , we performed immunohistochemical analyses using the antibodies that bind to selected AGP (JIM8, JIM13, JIM16, LM2 and MAC207), pectin/AGP (LM6) as well as EXT (JIM11, JIM12 and JIM20).

View Article and Find Full Text PDF

Background: Grafting is a technique widely used in horticulture. The processes involved in grafting are diverse, and the technique is commonly employed in studies focusing on the mechanisms that regulate cell differentiation or response of plants to abiotic stress. Information on the changes in the composition of the cell wall that occur during the grafting process is scarce.

View Article and Find Full Text PDF

Increasing usage of gold nanoparticles (AuNPs) in different industrial areas inevitably leads to their release into the environment. Thus, living organisms, including plants, may be exposed to a direct contact with nanoparticles (NPs). Despite the growing amount of research on this topic, our knowledge about NPs uptake by plants and their influence on different developmental processes is still insufficient.

View Article and Find Full Text PDF

Effective regeneration of callus tissue into embryos and then into whole plants is essential for plant biotechnology. The embryonic potential is often low and can further decrease with time in culture, which limits the utilisation of calli for transformation procedures and in vitro propagation. In this study, we show that the loss of embryogenic potential in callus cultures of is progressive over time.

View Article and Find Full Text PDF

The new model orange callus line, similar to carrot root, was rich in carotenoids due to altered expression of some carotenogenesis-associated genes and possessed unique diversity of chromoplast ultrastructure. Callus induced from carrot root segments cultured in vitro is usually pale yellow (p-y) and poor in carotenoids. A unique, non-engineered callus line of dark orange (d-o) colour was developed in this work.

View Article and Find Full Text PDF