Publications by authors named "Ewa Dobruchowska"

This study examines the structure and properties of NiMo-C coatings synthesized via reactive magnetron sputtering of a NiMo alloy target in an argon/acetylene atmosphere. The coating structure evolves with carbon content from nanocrystalline, through amorphous to quasi-amorphous with a nanocolumnar structure. The nanostructure consists of metallic columns perpendicular to the substrate surrounded by an amorphous carbon shell.

View Article and Find Full Text PDF

The purpose of the study was to ascertain the corrosion resistance in Hanks' solution of Cr-Ni-Mo stainless steel (AISI 316L) coated with diamond-like carbon (DLC) coatings to establish its suitability for biomedical applications, e.g., as temporary implants.

View Article and Find Full Text PDF

The current market requirements are related to the introduction of new protective coatings for tools and machine parts with much better performance properties. These requirements are met by the AlCrSiN coatings; however, knowledge on the adhesion of these coatings to the substrate, as well as on their corrosion resistance, is deficient. The article presents the results of technological works on the coating deposition from AlCrSi cathodes with a silicon concentration from 0 at% to 10 at% by the cathodic arc evaporation and the results of systematic studies of their structure, mechanical, tribological and electrochemical properties.

View Article and Find Full Text PDF

Purpose: The endoprostheses made of cobalt-chromium-molybdenum (Co-Cr-Mo) alloys belong to the group of the most popular metallic implants used for reconstruction of hip joints. For such biomaterials, the primary goal is a correct and long-term functioning in the aggressive environment of body fluids. Therefore, the purpose of this study was to examine both the morphology and the corrosion resistance of implants made of the cobalt alloy used in Birmingham Hip Resurfacing (BHR) system (Smith & Nephew).

View Article and Find Full Text PDF

The asymmetric unit of the title compound, C(34)H(30)N(2)O(4), contains four independent half-mol-ecules, the complete mol-ecules being generated by inversion symmetry. The mol-ecules each have planar (within 4σ) perylene-tetra-carb-oxy-lic diimide fragments with bent side chains. In one of the independent mol-ecules, each 3-pentyl fragment is disordered over two conformations in a 7:3 ratio.

View Article and Find Full Text PDF