Publications by authors named "Ewa D Raczynska"

In this review, the principles of gas-phase proton basicity measurements and theoretical calculations are recalled as a reminder of how the basicity PA/GB scale, based on Brønsted-Lowry theory, was constructed in the gas-phase (PA-proton affinity and/or GB-gas-phase basicity in the enthalpy and Gibbs energy scale, respectively). The origins of exceptionally strong gas-phase basicity of some organic nitrogen bases containing N-sp (amines), N-sp (imines, amidines, guanidines, polyguanides, phosphazenes), and N-sp (nitriles) are rationalized. In particular, the role of push-pull nitrogen bases in the development of the gas-phase basicity in the superbasicity region is emphasized.

View Article and Find Full Text PDF

In this review, the complete tautomeric equilibria are derived for disubstituted pyrimidine nucleic acid bases starting from phenol, aniline, and their model compounds-monosubstituted aromatic azines. The differences in tautomeric preferences for isolated (gaseous) neutral pyrimidine bases and their model compounds are discussed in light of different functional groups, their positions within the six-membered ring, electronic effects, and intramolecular interactions. For the discussion of tautomeric preferences and for the analysis of internal effects, recent quantum-chemical results are taken into account and compared to some experimental ones.

View Article and Find Full Text PDF

This work extends our earlier quantum chemical studies on the gas-phase basicity of very strong N-bases to two series of nitriles containing the methylenecyclopropene and cyclopropenimine scaffolds with dissymmetrical substitution by one or two electron-donating substituents such as Me, NR, N=C (NR), and N=P (NR), the last three being strong donors. For a proper prediction of their gas-phase base properties, all potential isomeric phenomena and reasonable potential protonation sites are considered to avoid possible inconsistencies when evaluating the energetic parameters and associated protonation or deprotonation equilibria B + H = BH. More than 250 new isomeric structures for neutral and protonated forms are analyzed.

View Article and Find Full Text PDF

Quantum chemical calculations were carried out for deprotonated (P) and protonated purine (PH) and for adducts with one alkali metal cation (PM and PM, where M is Li or Na) in the gas phase {B3LYP/6-311+G(d,p)}, a model of perfectly apolar environment, and for selected structures in aqueous solution {PCM(water)//B3LYP/6-311+G(d,p)}, a reference polar medium for biological studies. All potential isomers of purine derivatives were considered, the favored structures indicated, and the preferred sites for protonation/deprotonation and cationization reactions determined. Proton and metal cation basicities of purine in the gas phase were discussed and compared with those of imidazole and pyrimidine.

View Article and Find Full Text PDF

Intramolecular proton-transfers (prototropic conversions) have been studied for the guanine building block isocytosine (iC), and effects of positive ionization, called one-electron oxidation (iC - e → iC), and negative ionization, called one-electron reduction (iC + e → iC), on tautomeric conversions when proceeding from neutral to ionized isocytosine have been discussed. Although radical cations and radical anions are very short-lived species, the ionization effects could be investigated by quantum-chemical methods. Such kind of studies gives some information about the labile protons and the most basic positions in the neutral and radical forms of the tautomeric system.

View Article and Find Full Text PDF

Substituted biguanides are known for their biological effect, and a few of them are used as drugs, the most prominent example being metformin (1,1-dimethylbiguanide, IUPAC name: N,N-dimethylimidodicarbonimidic diamide). Because of the presence of hydrogen atoms at the amino groups, biguanides exhibit a multiple tautomerism. This aspect of their structures was examined in detail for unsubstituted biguanide and metformin in the gas phase.

View Article and Find Full Text PDF

Nitrogen bases containing one or more pushing amino-group(s) directly linked to a pulling cyano, imino, or phosphoimino group, as well as those in which the pushing and pulling moieties are separated by a conjugated spacer (C═X), where X is CH or N, display an exceptionally strong basicity. The n-π conjugation between the pushing and pulling groups in such systems lowers the basicity of the pushing amino-group(s) and increases the basicity of the pulling cyano, imino, or phosphoimino group. In the gas phase, most of the so-called push-pull nitrogen bases exhibit a very high basicity.

View Article and Find Full Text PDF

Consequences of ionization were studied by quantum-chemical methods (DFT and PCM) for 1-methylcytosine (MC)-a model of the nucleobase cytosine (C) connected with sugar in DNA. For calculations, three prototropic tautomers (one amino and two imino forms) and two imino zwitterions were considered, including conformational or configurational isomerism of exo heterogroups. Ionization and interactions between neighboring groups affect intramolecular proton-transfers, geometric and thermodynamic parameters, and electron delocalization for individual isomers.

View Article and Find Full Text PDF

DFT calculations have been performed for a series of push-pull nitriles [(R2N)n(X═Y)iC≡N, where i = 0, 1, or 2, n = 1, 2, or 3, R2N = H2N, Me2N, or C4H8N, X = CH, N, or P, Y = CH or N]. The possible protonation N-sites (N-cyano, N-imino, and N-amino) have been examined and their proton affinities (PA) estimated. For all compounds in the series, even for those containing the guanidino, phosphazeno, and diphosphazeno pushing groups, the N-cyano atom is the favored site of protonation.

View Article and Find Full Text PDF

Geometric consequences of electron delocalization were studied for all possible adenine tautomers in aqueous solution by means of ab initio methods {PCM(water)//DFT(B3LYP)/6-311+G(d,p)} and compared to those in the gas phase {DFT(B3LYP)/6-311+G(d,p)}. To measure the consequences of any type of resonance conjugation (π-π, n-π, and σ-π), the geometry-based harmonic oscillator model of electron delocalization (HOMED) index, recently extended to the isolated (DFT) and hydrated (PCM//DFT) molecules, was applied to the molecular fragments (imidazole, pyrimidine, 4-aminopyrimidine, and purine) and also to the whole tautomeric system. For individual tautomers, the resonance conjugations and consequently the bond lengths strongly depend on the position of the labile protons.

View Article and Find Full Text PDF

Quantum-chemical calculations were performed for all possible nine neutral tautomers of purine and their oxidized and reduced forms in water {PCM//DFT(B3LYP)/6-311+G(d,p)} and compared to those in the gas phase {DFT(B3LYP)/6-311+G(d,p)}. PCM hydration influences geometries, π-electron delocalization, and relative energies of purine tautomers in different ways. Generally, the harmonic oscillator model of electron delocalization (HOMED) indices increase when proceeding from the gas phase to aequeous solution for the neutral and redox forms of purine.

View Article and Find Full Text PDF

All possible twenty-three prototropic tautomers of neutral and redox adenine (nine amine and fourteen imine forms, including geometric isomerism of the exo ═NH group) were examined in vacuo {DFT(B3LYP)/6-311+G(d,p)}. The NH → NH conversions as well as those usually omitted, NH → CH and CH → CH, were considered. An interesting change of the tautomeric preference occurs when proceeding from neutral to reduced adenine.

View Article and Find Full Text PDF

Quantum-chemical calculations {DFT(B3LYP)/6-311+G(d,p)} were performed for all possible tautomers (aromatic and nonaromatic) of neutral 2- and 4-aminopyridines and their oxidized and reduced forms. One-electron oxidation has no important effect on the tautomeric preference for 2-aminopyridine. The amine tautomer is favored.

View Article and Find Full Text PDF

The consequences of one-electron oxidation and one-electron reduction were studied for 4-aminopyrimidine (4APM), which displays prototropic tautomerism. Since experimental techniques are incapable of detecting less than 0.1% of minor tautomers, quantum-chemical calculations [DFT(B3LYP)/6-311+G(d,p)] were carried out for all possible tautomers of neutral 4AMP and its redox forms, 4APM (+ •) and 4APM (- •).

View Article and Find Full Text PDF

Quantum-chemical calculations were performed for all possible isomers of neutral aniline and its redox forms, and intramolecular proton-transfer (prototropy) accompanied by π-electron delocalization was analyzed. One-electron oxidation (PhNH(2) - e → [PhNH(2)](+•)) has no important effect on tautomeric preferences. The enamine tautomer is preferred for oxidized aniline similarly as for the neutral molecule.

View Article and Find Full Text PDF

Although series of N(1), N(1)-dimethyl-N(2)-arylformamidines and of 1,1,3,3-tetraalkyl-2-arylguanidines are structurally analogous and similar electron-ionization mass spectral fragmentation may be expected, they display important differences in the favored routes of fragmentation and consequently in substituent effects on ion abundances. In the case of formamidines, the cyclization-elimination process (initiated by nucleophilic attack of the N-amino atom on the 2-position of the phenyl ring) and formation of the cyclic benzimidazolium [M-H](+) ions dominates, whereas the loss of the NR(2) group is more favored for guanidines. In order to gain information on the most probable structures of the principal fragments, quantum-chemical calculations were performed on a selected set.

View Article and Find Full Text PDF

Infrared spectra were recorded for cytisine (1) and its model compounds: N-methyl-2-pyridone (2) and piperidine (3) in solution. Eight solvents of different polarity, polarizability and acid-base properties: CCl(4), CS(2), CHCl(3), CDCl(3) (for comparison with the NMR spectra), CH(2)Cl(2), MeOH, Et(2)O and Et(3)N were chosen. Experimental FT-IR spectra were analysed with the help of those calculated for isolated derivatives at the AM1 and PM3 levels.

View Article and Find Full Text PDF

Keto-enol tautomeric interconversions and variations of the pi-electron distribution were studied for 11 isolated monohydroxyarenes at the DFT(B3LYP)/6-311++G(2df,2p) level. For two monohydroxyarenes (phenol and 9-anthrol), the PCM model of solvation (water) was also applied to the DFT geometries. The geometry-based HOMA index was applied to estimate pi-electron delocalization in the keto and enol tautomeric forms.

View Article and Find Full Text PDF

The gas-phase basicity (GB) of the flexible polyfunctional N(1),N(1)-dimethyl-N(2)-beta-(2-pyridylethyl)formamidine (1) containing two potential basic sites (the ring N-aza and the chain N-imino) is obtained from proton-transfer equilibrium constant measurements, using Fourier-transform ion-cyclotron resonance mass spectrometry. Comparison of the experimental GB obtained for 1 with those reported for model amidines and azines indicates that the chain N-imino in the amidine group is the favored site of protonation. Semiempirical (AM1) and ab initio calculations (HF, MP2, and DFT), performed for 1 and its protonated forms, confirm this interpretation.

View Article and Find Full Text PDF