Publications by authors named "Ewa Czechowska"

Purpose: Although it is well known that the size, shape, and surface chemistry affect the biological potential of silver nanoparticles (AgNPs), the published studies that have considered the influence of AgNP surface on antibacterial activity have not provided conclusive results. This is the first study whose objective was to determine the significance of the surface net charge of AgNPs on their antibacterial potential, attraction to bacterial cells, and cell envelope disruption, considering differences in bacterial surface properties.

Methods: We evaluated five commercial AgNP colloids with identical size and shape but different surface ligands.

View Article and Find Full Text PDF
Article Synopsis
  • Filaggrin (FLG) protein is crucial for maintaining the skin's barrier, but its buildup in a single form can lead to early cell death in skin cells (keratinocytes).
  • The study finds that small extracellular vesicles (sEVs) secreted by keratinocytes carry filaggrin and help remove excess levels, as blocking these vesicles causes cell damage.
  • S. aureus bacteria boost the packaging and release of filaggrin-related substances in sEVs through a specific mechanism, which may help the bacteria survive by promoting filaggrin removal from the skin.
View Article and Find Full Text PDF

The aim of the study was to investigate in vivo whether the application of immobilized superoxide dismutase (SOD) and catalase (CAT) could enhance DNA repairing systems and reduce level of CPD (cyclobutane pyrimidine dimers) and 6-4PP ((6-4) pyrimidine-pyrimidone photoproducts), and whether the immobilization on gold (AuNPs) and silver (AgNPs) nanoparticles affects the outcome. The study presents secondary analysis of our previous research. Three-day application of SOD and CAT in all forms of solution decreased the levels of CPD and 6-4PP boosted by UV irradiation.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role.

View Article and Find Full Text PDF

Microservices, Continuous Integration and Delivery, Docker, DevOps, Infrastructure as Code-these are the current trends and buzzwords in the technological world of 2020. A popular tool which can facilitate the deployment and maintenance of microservices is Kubernetes. Kubernetes is a platform for running containerized applications, for example microservices.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) and catalase (CAT) immobilized on gold nanoparticles (AuNP) and silver nanoparticles (AgNP) nanoparticles were used to reduce UV radiation-induced oxidative stress in rat skin. The antioxidant influence of the enzymes was investigated on level of malondialdehyde, 8-hydroksy-2'deoksyguanozine, myeloperoxidase, total antioxidant capacity, SOD2 and CAT activity and expression, and glutathione and glutathione peroxidase activity. The application of immobilized SOD and CAT on UV-irradiated skin reduced malondialdehyde and 8-hydroksy-2'deoksyguanozine levels also SOD and CAT activity and expression increased.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) is one of the best characterized enzyme maintaining the redox state in the cell. A bacterial expression system was used to produce human recombinant manganese SOD with a His-tag on the C-end of the protein for better purification. In addition, gold and silver nanoparticles were chemically synthesized in a variety of sizes, and then mixed with the enzyme for immobilization.

View Article and Find Full Text PDF

In this study, we present a comparison of the antioxidant activity of catalase immobilized on gold nanoparticles (AuNPs) by two methods: i) directly on the surface of AuNPs (non-specific immobilization), and ii) via chemical bonding using a linker (specific immobilization). Quantification of the enzyme amount adsorbed on the nanoparticle surface was determined by native-polyacrylamide gel electrophoresis (native-PAGE). Colloidal stability of AuNPs before and after the enzyme immobilization was monitored with dynamic light scattering (DLS) and UV-vis spectroscopy.

View Article and Find Full Text PDF

Human catalase cDNA was cloned into a pEX-C-His vector. Purified recombinant catalase was immobilized on nanoparticles. Gold and silver nanoparticles were synthesized in a variety of sizes by chemical reduction; no agglomerates or aggregates were observed in any of the colloids during dynamic light scattering or scanning transmission electron microscopy analysis.

View Article and Find Full Text PDF

In this study we present a method to determine the degree to which catalase (CAT) is adsorbed onto gold nanoparticles (AuNPs) using polyacrylamide gel electrophoresis (PAGE) with silver staining. AuNPs (13nm) were synthesized in water by the chemical reduction method and modified with CAT (AuNPs-CAT). The colloidal stability and NP size before and after the modification were investigated by dynamic light scattering and scanning transmission electron microscopy.

View Article and Find Full Text PDF