J Am Chem Soc
November 2006
The currently available microwave technology permits the development and implementation of a temperature-programmed microwave-assisted synthesis (TPMS) of ordered mesoporous silicas (OMSs). Unlike in previously reported syntheses of OMSs, in which only the final hydrothermal treatment was carried out under microwave irradiation, this work takes advantage of the existing capabilities of modern microwave systems to program the temperature and time for the entire synthesis of these materials. To demonstrate the flexibility of the proposed microwave-assisted synthesis, besides programming two consecutive steps involving initial stirring of the gel at a lower temperature and static hydrothermal treatment at a higher temperature, we explored the possibility of temperature programming of the latter step.
View Article and Find Full Text PDFMesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon.
View Article and Find Full Text PDFOrdered silicas with large (9-15 nm), uniform, cagelike mesopores were synthesized under acidic aqueous conditions from tetraethyl orthosilicate in the presence of sodium chloride using poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer B50-6600 (EO39BO47EO39, Dow Chemicals) as a supramolecular template. Except for the use of NaCl in our case, the synthesis mixture composition was the same as that originally reported by Zhao et al. for the synthesis of FDU-1 silica, which was later shown to exhibit a cubic close-packed (Fm3m) structure with stacking faults related to the occurrence of hexagonal close-packed stacking sequences.
View Article and Find Full Text PDF