This review paper focuses on the recent advancements in the large-scale and laboratory-scale isolation, modification, and characterization of novel starches from accessible botanical sources and food wastes. When creating a new starch product, one should consider the different physicochemical changes that may occur. These changes include the course of gelatinization, the formation of starch-lipids and starch-protein complexes, and the origin of resistant starch (RS).
View Article and Find Full Text PDFIn this paper, significant attention is paid to the retention of phenolics in extrudates and their health effects. Due to the large number of recent articles devoted to total phenolic content (TPC) of input mixtures and extrudates, the technological changes are only presented for basic raw materials and the originating extrudates, and only the composites identified has having the highest amounts of TPC are referred to. The paper is also devoted to the changes in individual phenolics during extrusion (phenolic acids, flavonoids, flavonols, proanthocyanidins, flavanones, flavones, isoflavons, and 3-deoxyanthocyanidins).
View Article and Find Full Text PDFWheat B-starch was hydrolysed by α-amylase "Liquozyme supra" from Bacillus licheniformis at 90 °C and pH 7. After 2 h, the dextrose equivalent was 18; according to size exclusion chromatography, however, the hydrolysate contained not only dominant malto-oligosaccharides with the degree of polymerisation (DP)<10 but also more than 20% of components with DP higher than 40. The product was acetylated to a high degree as verified by FTIR and (1)H NMR (degree of substitution DS=3.
View Article and Find Full Text PDF