For the first time, an original synthetic approach has been developed that enables the introduce ten tetrazole fragments into the pillar[5]arene structure. A supramolecular electrochemical probe was assembled for the first time from the obtained macrocycles and an electrochemically active signal converter: methylene blue (MB) dye. The ability of pillar[5]arene containing tetrazole fragments to selectively bind MB was confirmed by UV-vis and 2D H-H NOESY spectroscopy.
View Article and Find Full Text PDFA flow-through biosensor system for the determination of uric acid was developed on the platform of flow-through electrochemical cell manufactured by 3D printing from poly(lactic acid) and equipped with a modified screen-printed graphite electrode (SPE). Uricase was immobilized to the inner surface of a replaceable reactor chamber. Its working volume was reduced to 10 μL against a previously reported similar cell.
View Article and Find Full Text PDFNeurodegenerative diseases and Alzheimer's disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases.
View Article and Find Full Text PDFA novel electrochemical DNA sensor was developed for the detection of the anthracycline drug, valrubicin, on the base of poly(Azure C) electropolymerized from the deep eutectic solvent reline and covered with adsorbed DNA from calf thymus. Biosensor assembling was performed by multiple scanning of the potential in one drop (100 µL) of the dye dissolved in reline and placed on the surface of a screen-printed carbon electrode. Stabilization of the coating was achieved by its polarization in the phosphate buffer.
View Article and Find Full Text PDFAn electrochemically active polymer, polythionine (PTN), was synthesized in natural deep eutectic solvent (NADES) via multiple potential scans and characterized using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). NADES consists of citric acid monohydrate, glucose, and water mixed in the molar ratio of 1:1:6. Electrodeposited PTN film was then applied for the electrostatic accumulation of DNA from salmon sperm and used for the sensitive detection of the anticancer drug epirubicin.
View Article and Find Full Text PDFA novel voltammetric sensor based on a self-assembled composite formed by native DNA and electropolymerized N-phenyl-3-(phenylimino)-3H-phenothiazin-7-amine has been developed and applied for sensitive determination of doxorubicin, an anthracycline drug applied for cancer therapy. For this purpose, a monomeric phenothiazine derivative has been deposited on the glassy carbon electrode from the 0.4 M HSO-acetone mixture (1:1 /) by multiple potential cycling.
View Article and Find Full Text PDFThe assembling of thiacalix[4]arene-based dendrimers in , , and configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Native and damaged DNA were electrostatically accumulated on the modifier layer. The influence of the charge of the redox indicator and of the macrocycle/DNA ratio was quantified and the roles of the electrostatic interactions and of the diffusional transfer of the redox indicator to the electrode interface indicator access were established.
View Article and Find Full Text PDFElectrochemical DNA sensors are highly demanded for fast and reliable determination of antitumor drugs and chemotherapy monitoring. In this work, an impedimetric DNA sensor has been developed on the base of a phenylamino derivative of phenothiazine (PhTz). A glassy carbon electrode was covered with electrodeposited product of PhTz oxidation obtained through multiple scans of the potential.
View Article and Find Full Text PDFTwo-dimensional black phosphorus (BP) has emerged as a perspective material for various micro- and opto-electronic, energy, catalytic, and biomedical applications. Chemical functionalization of black phosphorus nanosheets (BPNS) is an important pathway for the preparation of materials with improved ambient stability and enhanced physical properties. Currently, the covalent functionalization of BPNS with highly reactive intermediates, such as carbon-free radicals or nitrenes, has been widely implemented to modify the material's surface.
View Article and Find Full Text PDFIn this review, recent achievements in the development of the DNA biosensors developed for the drug determination have been presented with particular emphasis to the main principles of their assembling and signal measurement approaches. The design of the DNA sensors is considered with characterization of auxiliary components and their necessity for the biosensor operation. Carbon nanomaterials, metals and their complexes as well as electropolymerized polymers are briefly described in the assembly of DNA sensors.
View Article and Find Full Text PDFFast and reliable determination of enzyme inhibitors are of great importance in environmental monitoring and biomedicine because of the high biological activity and toxicity of such species and the necessity of their reliable assessment in many media. In this work, a flow-through biosensor has been developed and produced by 3D printing from poly(lactic acid). Acetylcholinesterase from an electric eel was immobilized on the inner walls of the reactor cell.
View Article and Find Full Text PDFAntibiotics are often used in human and veterinary medicine for the treatment of bacterial diseases. However, extensive use of antibiotics in agriculture can result in the contamination of common food staples such as milk. Consumption of contaminated products can cause serious illness and a rise in antibiotic resistance.
View Article and Find Full Text PDFThe detection of small molecules interacting with DNA is important for the assessment of potential hazards related to the application of rather toxic antitumor drugs, and for distinguishing the factors related to thermal and oxidative DNA damage. In this work, a novel electrochemical DNA sensor has been proposed for the determination of antitumor drugs. For DNA sensor assembling, a glassy carbon electrode was modified with carbon black dispersed in DMF.
View Article and Find Full Text PDFElectrochemical DNA sensors offer unique opportunities for the sensitive detection of specific DNA interactions. In this work, a voltametric DNA sensor is proposed on the base of glassy carbon electrode modified with carbon black, adsorbed acridine yellow and DNA for highly sensitive determination of doxorubicin antitumor drug. The signal recorded by cyclic voltammetry was attributed to irreversible oxidation of the dye.
View Article and Find Full Text PDFElectropolymerized redox polymers offer broad opportunities in detection of biospecific interactions of DNA. In this work, Azure A was electrochemically polymerized by multiple cycling of the potential in phosphate buffer saturated with chloroform and applied for discrimination of the DNA damage. The influence of organic solvent on electrochemical properties of the coating was quantified and conditions for implementation of DNA in the growing polymer film were assessed using cyclic voltammetry, quartz crystal microbalance, and electrochemical impedance spectroscopy.
View Article and Find Full Text PDFDecasubstituted pillar[5]arenes containing amidopyridine fragments have been synthesized for the first time. As was shown by UV-vis spectroscopy, the pillar[5]arenes with -amidopyridine fragments form supramolecular associates with Cu(II) and Pd(II) cations in methanol in a 2:1 ratio. Using a sol-gel approach these associates are transformed into metallo-supramolecular coordination polymers (supramolecular gels) which were characterized as amorphous powders by scanning electron microscopy (SEM) and dynamic light scattering (DLS).
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) offer a unique variety of properties and morphology of the structure that make it possible to extend the performance of existing and design new electrochemical biosensors. High porosity, variable size and morphology, compatibility with common components of electrochemical sensors, and easy combination with bioreceptors make MOFs very attractive for application in the assembly of electrochemical aptasensors. In this review, the progress in the synthesis and application of the MOFs in electrochemical aptasensors are considered with an emphasis on the role of the MOF materials in aptamer immobilization and signal generation.
View Article and Find Full Text PDFThe determination of antibiotics in food is important due to their negative effect on human health related to antimicrobial resistance problem, renal toxicity, and allergic effects. We propose an impedimetric aptasensor for the determination of kanamycin A (KANA), which was assembled on the glassy carbon electrode by the deposition of carbon black in a chitosan matrix followed by carbodiimide binding of aminated aptamer mixed with oligolactide derivative of thiacalix[4]arene in a configuration. The assembling was monitored by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy.
View Article and Find Full Text PDFA DNA sensor has been developed for the determination of doxorubicin by consecutive electropolymerization of an equimolar mixture of Azure B and proflavine and adsorption of native DNA from salmon sperm on a polymer film. Electrochemical investigation showed a difference in the behavior of individual drugs polymerized and their mixture. The use of the copolymer offered some advantages, i.
View Article and Find Full Text PDFDNA sensors were assembled by consecutive deposition of thiacalix[4]arenes bearing oligolactic fragments, poly(ethylene imine), and DNA onto the glassy carbon electrode. The assembling of the layers was monitored with scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The configuration of the thiacalix[4]arene core determined self-assembling of the polymeric species to the nano/micro particles with a size of 70-350 nm.
View Article and Find Full Text PDFProducts of lactic acid polycondensation (poly- and oligolactic acids) are widely used as packaging materials, drug delivery agents, implants etc. Variety of their applications is caused by a number of practically important properties, e.g.
View Article and Find Full Text PDFA new voltammetric DNA sensor has been developed for doxorubicin determination on the platform of a glassy carbon electrode (GCE) covered with electropolymerized Azure B film and physically adsorbed native DNA. The redox properties of polymeric Azure B were monitored at various pH and scan rates. DNA application decreased the peak currents related to polymeric and monomeric forms of the dye, whereas incubation in doxorubicin solution partially restored the peaks in accordance with the drug and DNA concentration.
View Article and Find Full Text PDFA DNA sensor has been proposed on the platform of glassy carbon electrode modified with native DNA implemented between two electropolymerized layers of polyaniline. The surface layer was assembled by consecutive stages of potentiodynamic electrolysis, DNA drop casting, and second electrolysis, which was required for capsulation of the DNA molecules and prevented their leaching into the solution. Surface layer assembling was controlled by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force, and scanning electron microscopy.
View Article and Find Full Text PDFSynthesis and application of nanostructured materials applicable in the assembly of electrochemical sensors is one of the important trends in material sciences and analytical chemistry. In this work, we have proposed and implemented simple non-template method for assembling nanofibers from the polyaniline ultrasonicated with phenyliminophenothiazine in aqueous media. Two-step procedure including association with emeraldine dispersion and reorganization under ultrasonication led to formation of nanofibrillar structures with average diameter of 20 nm.
View Article and Find Full Text PDF