Phosphodiesterase 10A (PDE10) is a cyclic nucleotide (e.g. cGMP) degrading enzyme highly expressed in the brain striatum where it plays an important role in dopaminergic neurotransmission, but has limited expression and no known physiological function outside the central nervous system.
View Article and Find Full Text PDFTo determine the availability of data on overall survival and quality of life benefits of cancer drugs approved in Europe. Retrospective cohort study. Publicly accessible regulatory and scientific reports on cancer approvals by the European Medicines Agency (EMA) from 2009 to 2013.
View Article and Find Full Text PDFThe tumor suppressor protein p53 plays a critical role in limiting malignant development and progression. Almost all cancers show loss of p53 function, through either mutation in the p53 gene itself or defects in the mechanisms that activate p53. While reactivation of p53 can effectively limit tumor growth, this is a difficult therapeutic goal to achieve in the many cancers that do not retain wild type p53.
View Article and Find Full Text PDFNumerous epidemiologic studies have reported that the long-term use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with a significant decrease in cancer incidence and delayed progression of malignant disease. The use of NSAIDs has also been linked with reduced risk from cancer-related mortality and distant metastasis. Certain prescription-strength NSAIDs, such as sulindac, have been shown to cause regression of precancerous lesions.
View Article and Find Full Text PDFDerivatives with scaffolds of 1,3,5-tri-substituted pyrazoline and 1,3,4,5-tetra-substituted pyrazoline were synthesized and tested for their inhibitory effects versus the p53(+/+) HCT116 and p53(-/-) H1299 human tumor cell lines. Several compounds were active against the two cell lines displaying IC50 values in the low micromolar range with a clearly more pronounced effect on the p53(+/+) HCT116 cells. The compound class shows excellent developability due to the modular synthesis, allowing independent optimization of all three to four key substituents to improve the properties of the molecules.
View Article and Find Full Text PDFEpidemiological and clinical studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs), including cyclooxygenase (COX)-2 selective inhibitors, reduce the risk of developing cancer. Experimental studies in human cancer cell lines and rodent models of carcinogenesis support these observations by providing strong evidence for the antineoplastic properties of NSAIDs. The involvement of COX-2 in tumorigenesis and its overexpression in various cancer tissues suggest that inhibition of COX-2 is responsible for the chemopreventive efficacy of these agents.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity for colorectal and other cancers, but toxicity from COX inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not require COX inhibition, although the underlying mechanism is poorly understood. Here, we report that the NSAID sulindac sulfide inhibits cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP-dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs such as sulindac sulfide have shown promising antineoplastic activity in multiple tumor types, but toxicities resulting from COX inhibition limit their use in cancer therapy. We recently described a N,N-dimethylethyl amine derivative of sulindac sulfide, sulindac sulfide amide (SSA), that does not inhibit COX-1 or -2, yet displays potent tumor cell growth-inhibitory activity. Here, we studied the basis for the growth-inhibitory effects of SSA on human lung adenocarcinoma cell lines.
View Article and Find Full Text PDFWe herein describe the development and validation of an HPLC method for the quantitation of 7-(benzylamino)-1,3,4,8-tetrahydropyrrolo [4,3,2-de]quinolin-8(1H)-one (BA-TPQ), a newly synthesized iminoquinone anticancer agent. BA-TPQ was extracted from plasma and tissue samples by first precipitating proteins with acetonitrile followed by a liquid-liquid extraction with ethyl acetate. Chromatographic separation was carried out using a gradient flow rate on a Zorbax SB C(18) column, and the effluent was monitored by UV detection at 346 nm.
View Article and Find Full Text PDFMarine natural products and their synthetic derivatives represent a major source of novel candidate anti-cancer compounds. We have recently tested the anti-cancer activity of more than forty novel compounds based on an iminoquinone makaluvamine scaffold, and have found that many of the compounds exert potent cytotoxic activity against human cancer cell lines. One of the most potent compounds, BA-TPQ [(11,12),7-(benzylamino)-1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H)-one], was active against a variety of human cancer cell lines, and inhibited the growth of breast and prostate xenograft tumors in mice.
View Article and Find Full Text PDF