IEEE Trans Biomed Circuits Syst
June 2024
Intravascular ultrasound (IVUS) imaging catheters are significant tools for cardiovascular interventions, and their use can be expanded by realizing IVUS imaging guidewires and microcatheters. The miniaturization of these devices creates challenges in SNR due to the need for higher frequencies to provide adequate resolution. An integrated IVUS system with transmit beamforming can mitigate these limitations.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
August 2022
This paper presents an active impedance matching scheme that tries to optimize electrical power transfer and acoustic reflectivity in ultrasound transducers. Leveraging negative capacitance-based impedance matching would potentially improve the bandwidth and electrical power transfer while minimizing acoustic reflection of transducer elements and improve uniformity while reducing acoustic crosstalk of transducer arrays. A 16-element transceiver front-end is designed which employs an element-level active capacitive impedance cancellation scheme using an element-level negative impedance converter.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2021
Tight integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with integrated circuits can make active impedance matching feasible for practical imaging devices. In this article, negative capacitance-based impedance matching for CMUTs is investigated. Simple equivalent circuit model-based calculations show the potential of negative capacitance matching for improving the bandwidth along with electrical power transfer and acoustic reflectivity, but the model has limitations especially for acoustic reflectivity evaluation.
View Article and Find Full Text PDFIEEE J Solid-State Circuits
May 2020
In this article, we present a highly integrated guidewire ultrasound (US) imaging system-on-a-chip (GUISoC) for vascular imaging. The SoC consists of a 16-channel US transmitter (Tx) and receiver (Rx) electronics, on-chip power management IC (PMIC), and quadrature sampler. Using a synthetic aperture imaging algorithm, a Tx/Rx pair, connected to capacitive micromachined ultrasound transducers (CMUTs), can be activated at any time.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2019
High-frequency ultrasound imaging arrays are important for a broad range of applications, from small animal imaging to photoacoustics. Capacitive micromachined ultrasonic transducer (CMUT) arrays are particularly attractive for these applications as low noise receiver electronics can be integrated for an overall improved performance. In this paper, we present a comprehensive analysis of high-frequency CMUT arrays based on an experimentally verified CMUT array simulation tool.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2016
We present a system-on-a-chip (SoC) for use in high-frequency capacitive micromachined ultrasonic transducer (CMUT) imaging systems. This SoC consists of trans-impedance amplifiers (TIA), delay locked loop (DLL) based clock multiplier, quadrature sampler, and pulse width modulator (PWM). The SoC down converts RF echo signal to baseband by quadrature sampling which facilitates modulation.
View Article and Find Full Text PDF