Publications by authors named "Evonne M Rezler"

An organic chemistry experiment is described that is based on recent research to elucidate a novel cation-π interaction between tetraalkammonium cations and propargyl hydrazines. This non-bonded interaction is a key component of the mechanism of ammonium-catalyzed intramolecular cycloaddition of nitrogen to the terminal carbon of a C-C triple bond of the propargyl substrate. In this teaching experiment, reactions and control experiments are employed to demonstrate the testing of two alternative mechanistic hypotheses.

View Article and Find Full Text PDF

Cell penetrating peptides (CPPs) have attracted recent interest as drug delivery tools, although the mechanisms by which CPPs are internalized by cells are not well-defined. Here, we report a new experimental approach for the detection and secondary structure determination of CPPs in live cells using Raman microscopy with heavy isotope labeling of the peptide. As a first demonstration of principle, penetratin, a 16-residue CPP derived from the Antennapedia homeodomain protein of Drosophila, was measured in single, living melanoma cells.

View Article and Find Full Text PDF

One of the biggest obstacles for efficient drug delivery is specific cellular targeting. Liposomes have long been used for drug delivery, but do not possess targeting capabilities. This limitation may be circumvented by surface coating of colloidal delivery systems with peptides, proteins, carbohydrates, vitamins, or antibodies that target cell surface receptors or other biomolecules.

View Article and Find Full Text PDF

A major obstacle in drug delivery is the inability to effectively deliver drugs to their intended biological target without deleterious side-effects. Delivery vehicles such as liposomes can minimize toxic side-effects by shielding the drug from reaction with unintended targets while in systemic circulation. Liposomes have the ability to accommodate both hydrophilic and hydrophobic drugs, either in the internal aqueous core or the lipid bilayer, respectively.

View Article and Find Full Text PDF

The proximal 5'-flanking region of the human platelet-derived growth factor A (PDGF-A) promoter contains one nuclease hypersensitive element (NHE) that is critical for PDGF-A gene transcription. On the basis of circular dichroism (CD) and electrophoretic mobility shift assay (EMSA), we have shown that the guanine-rich (G-rich) strand of the DNA in this region can form stable intramolecular parallel G-quadruplexes under physiological conditions. A Taq polymerase stop assay has shown that the G-rich strand of the NHE can form two major G-quadruplex structures, which are in dynamic equilibrium and differentially stabilized by three G-quadruplex-interactive drugs.

View Article and Find Full Text PDF

Nanotechnology-based drug delivery systems (nanoDDSs) have seen recent popularity due to their favorable physical, chemical, and biological properties, and great efforts have been made to target nanoDDSs to specific cellular receptors. CD44/chondroitin sulfate proteoglycan (CSPG) is among the receptors overexpressed in metastatic melanoma, and the sequence to which it binds within the type IV collagen triple-helix has been identified. A triple-helical "peptide-amphiphile" (alpha1(IV)1263-1277 PA), which binds CD44/CSPG, has been constructed and incorporated into liposomes of differing lipid compositions.

View Article and Find Full Text PDF

The human telomeric sequence d[T(2)AG(3)](4) has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na(+)), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution.

View Article and Find Full Text PDF

The nuclease hypersensitivity element III1 (NHE III1) upstream of the P1 and P2 promoters of c-MYC controls 80-90% of the transcriptional activity of this gene. The purine-rich strand in this region can form a G-quadruplex structure that is a critical part of the silencer element for this promoter. We have demonstrated that this G-quadruplex structure can form a mixture of four biologically relevant parallel-loop isomers, which upon interaction with the cationic porphyrin TMPyP4 are converted to mixed parallel/antiparallel G-quadruplex structures.

View Article and Find Full Text PDF

The components and cofactors of the holoenzyme telomerase and its substrate telomeric DNA are attractive targets for anticancer agents that act by inhibiting the activity of telomerase. This review outlines recent advances in telomerase inhibition that have been achieved using antisense oligonucleotides and ribozymes that target the telomerase mRNA or its hTR RNA template. Although these are potent catalytic inhibitors of telomerase, they are challenging to implement in the clinic due to their delayed effectiveness.

View Article and Find Full Text PDF

Recent advances in telomerase inhibition have been achieved by using antisense oligonucleotides and ribozymes to target the telomerase mRNA or the telomerase RNA template. Also, small molecules are potent catalytic inhibitors of telomerase. However, therapeutic regimes incorporating these agents will be challenging to implement in the clinic because of their delayed effectiveness.

View Article and Find Full Text PDF