Publications by authors named "Evmorfia Psarra"

The development of bioengineered surface coatings with stimuli-responsive properties is beneficial for a number of biomedical applications. Environmentally responsive and switchable polymer brush systems have a great potential to create such smart biointerfaces. This study focuses on the bioconjugation of cell-instructive peptides, containing the arginine-glycine-aspartic acid tripeptide sequence (RGD motif), onto well-defined polymer brush films.

View Article and Find Full Text PDF

Bioinspired materials mimicking the native extracellular matrix environment are promising for biotechnological applications. Particularly, modular biosurface engineering based on the functionalization of stimuli-responsive polymer brushes with peptide sequences can be used for the development of smart surfaces with biomimetic cues. The key aspect of this study is the in situ monitoring and analytical verification of the biofunctionalization process on the basis of three complementary analytical techniques.

View Article and Find Full Text PDF

In this study we present the development of responsive nanoscale substrates exhibiting cell-guiding properties based on incorporated bioactive signaling cues. The investigative approach considered the effect of two different surface-bound growth factors (GFs) on cell behavior and response: hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF). Two surface biofunctionalization strategies were explored in order to conceive versatile, bioactive thin polymer brush films.

View Article and Find Full Text PDF

Controlling the reversibility, quantity, and extent of biomolecule interaction at interfaces has a significant relevance for biomedical and biotechnological applications, because protein adsorption is always the first step when a solid surface gets in contact with a biological fluid. Polymer brushes, composed of end-tethered linear polymers with sufficient grafting density, are very promising to control and alter interactions with biological systems because of their unique structure and distinct collaborative response to environmental changes. We studied protein adsorption and cell adhesion at polymer brush substrates which consisted of poly(N-isopropylacrylamide) (PNIPAAm), having a lower critical solution temperature (LCST), to control bioadsorptive processes by changing the environmental temperature.

View Article and Find Full Text PDF