Publications by authors named "Evin G"

Alzheimer's disease (AD) is the primary cause of dementia in the elderly. It remains incurable and poses a huge socio-economic challenge for developed countries with an aging population. AD manifests by progressive decline in cognitive functions and alterations in behaviour, which are the result of the extensive degeneration of brain neurons.

View Article and Find Full Text PDF

This chapter describes methods for establishing oxidative stress conditions that do not induce cell death in a neuronal cell culture model. We termed these conditions "mild oxidative stress," as opposed to "severe oxidative stress," which results in significant cell loss. Mild oxidative stress resembles more closely what happens in the aging brain than severe oxidative stress.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the major cause of dementia in the elderly and an unmet clinical challenge. A variety of therapies that are currently under development are directed to the amyloid cascade. Indeed, the accumulation and toxicity of amyloid-β (Aβ) is believed to play a central role in the etiology of the disease, and thus rational interventions are aimed at reducing the levels of Aβ in the brain.

View Article and Find Full Text PDF

Platelets are the first peripheral source of amyloid precursor protein (APP). They possess the proteolytic machinery to produce Aβ and fragments similar to those produced in neurons, and thus offer an ex-vivo model to study APP processing and changes associated with Alzheimer's disease (AD). Platelet process APP mostly through the α-secretase pathway to release soluble APP (sAPP).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that causes dementia in a large percentage of the aged population and for which there are only symptomatic treatments. Disease-modifying therapies that are currently being pursued are based on the amyloid cascade theory. This states that accumulation of amyloid β (Aβ) in the brain triggers a cascade of cellular events leading to neurodegeneration.

View Article and Find Full Text PDF

BACE1 is responsible for β-secretase cleavage of the amyloid precursor protein (APP), which represents the first step in the production of amyloid β (Aβ) peptides. Previous reports, by us and others, have indicated that the levels of BACE1 protein and activity are increased in the brain cortex of patients with Alzheimer's disease (AD). The association between oxidative stress (OS) and AD has prompted investigations that support the potentiation of BACE1 expression and enzymatic activity by OS.

View Article and Find Full Text PDF

β-Site APP-cleaving enzyme (BACE1) cleaves the amyloid precursor protein (APP) at the β-secretase site to initiate the production of Aβ peptides. These accumulate to form toxic oligomers and the amyloid plaques associated with Alzheimer's disease (AD). An increase of BACE1 levels in the brain of AD patients has been mostly attributed to alterations of its intracellular trafficking.

View Article and Find Full Text PDF

Inhibition of GSL (glycosphingolipid) synthesis reduces Aβ (amyloid β-peptide) production in vitro. Previous studies indicate that GCS (glucosylceramide synthase) inhibitors modulate phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2) and that the ERK pathway may regulate some aspects of Aβ production. It is not clear whether there is a causative relationship linking GSL synthesis inhibition, ERK phosphorylation and Aβ production.

View Article and Find Full Text PDF

Cerebral amyloid-β (Aβ) deposition is a critical feature of Alzheimer's disease. Aβ is derived from the amyloid-β protein precursor (AβPP) via two sequential cleavages that are mediated by β-secretase and the γ-secretase complex. Such amyloidogenic AβPP processing occurs in lipid raft microdomains of cell membranes and it is thought that modulating the distribution of lipids in rafts may regulate AβPP processing and Aβ production.

View Article and Find Full Text PDF

Pathological changes in the Alzheimer's disease (AD) brain include amyoid-β (Aβ) plaques, and neurofibrillary tangles, as well as neuronal death and synaptic loss. Matrix metalloproteinases MMP-2 and MMP-9 are known to degrade Aβ, and their expressions are increased in the AD brain, in particular in the astrocytes surrounding amyloid plaque. To investigate a possible association between plasma metalloproteinases and AD, we quantified MMP-2 and MMP-9 activities in the plasma of healthy controls (HC, n = 56), cases with mild cognitive impairment (MCI, n = 45), and AD (n = 50).

View Article and Find Full Text PDF

Current drug development for the treatment of Alzheimer's Disease is principally based on the amyloid cascade theory, and aims to reduce the levels of Aβ amyloid peptide in the brain. This can be achieved, either by decreasing peptide production through inhibition of β-secretase (also known as BACE-1) or γ-secretase, or by interfering with Aβ aggregation, or by promoting Aβ clearance. Targeting BACE-1, the proteolytic enzyme that initiates Aβ formation, has generated a lot of research interest recently and is currently thought to be one of the most promising therapeutic approaches.

View Article and Find Full Text PDF

BACE initiates the amyloidogenic processing of the amyloid precursor protein (APP) that results in the production of Aβ peptides associated with Alzheimer's disease (AD). Previous studies have indicated that BACE is elevated in the frontal cortex of AD patients. Golgi-localized γ-ear containing ADP ribosylation factor-binding proteins (GGA) control the cellular trafficking of BACE and may alter its levels.

View Article and Find Full Text PDF

Accumulation of toxic amyloid-β (Aβ) in the cerebral cortex and hippocampus is a major pathological feature of Alzheimer's disease (AD). The neurotrophin receptor p75NTR has been proposed to mediate Aβ-induced neurotoxicity; however, its role in the development of AD remains to be clarified. The p75NTR/ExonIII-/- mice and APPSwe/PS1dE9 mice were crossed to generate transgenic AD mice with deletion of p75NTR gene.

View Article and Find Full Text PDF

Gamma-secretase is involved in the production of Aβ amyloid peptides. It cleaves the transmembrane domain of the amyloid precursor protein (APP) at alternative sites to produce Aβ and the APP intracellular domain (AICD). Metal ions play an important role in Aβ aggregation and metabolism, thus metal chelators and ligands represent potential therapeutic agents for AD treatment.

View Article and Find Full Text PDF

Dyshomeostasis of extracellular zinc and copper has been implicated in β-amyloid aggregation, the major pathology associated with Alzheimer disease. Presenilin mediates the proteolytic cleavage of the β-amyloid precursor protein to release β-amyloid, and mutations in presenilin can cause familial Alzheimer disease. We tested whether presenilin expression affects copper and zinc transport.

View Article and Find Full Text PDF

Neuregulin 1 (NRG1) is a susceptibility gene for schizophrenia. A decrease in NRG1-ErbB4 signalling has also been associated with the disease. β-amyloid precursor protein-cleaving enzyme (BACE1) processes type III NRG1 precursor, a major neuregulin variant expressed in the brain, to release NRG1 fragments that trigger signalling events and activation of neurotransmitter receptors.

View Article and Find Full Text PDF

β-Site APP-cleaving enzyme (BACE) is a membrane-bound aspartyl protease involved in the production of Alzheimer's disease (AD) Aβ amyloid peptides. This enzyme is ubiquitously expressed, with highest levels in the brain and pancreas. Its cellular trafficking is tightly controlled as it recycles between endosomes and trans-Golgi network.

View Article and Find Full Text PDF

Previous studies suggest that membrane lipids may regulate proteolytic processing of the amyloid precursor protein (APP) to generate amyloid-beta peptide (Abeta). In the present study, we have assessed the capacity for a series of structurally related synthetic ceramide analogues to modulate APP processing in vitro. The compounds tested are established glucosylceramide synthase (GS) inhibitors based on the d-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) structure.

View Article and Find Full Text PDF

The primary constituent of the amyloid plaque, beta-amyloid (Abeta), is thought to be the causal "toxic moiety" of Alzheimer's disease. However, despite much work focused on both Abeta and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein-protein interaction networks can provide insight into protein function, however, high-throughput data often report false positives and are in frequent disagreement with low-throughput experiments.

View Article and Find Full Text PDF

Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), beta-amyloid peptide (Abeta) aggregation, and amyloid formation. Abeta.copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides.

View Article and Find Full Text PDF

Decreased muscarinic M1 receptor (CHRM1) mRNA has been reported in Brodmann's area (BA) 6 from subjects with schizophrenia. We have extended this study by measuring levels of CHRM1 ([(3)H]pirenzepine binding), CHRM3 ([(3)H]4-DAMP binding), the transcription factor SP1 and the CHRM1 downstream target beta-site APP-cleaving enzyme 1 (BACE1) in BA 6 from 19 subjects with schizophrenia and 19 control subjects. Radioligand binding was quantified using either in situ radioligand binding with autoradiography or, in cohorts of 10 control subjects and 10 subjects with schizophrenia, membrane enriched fraction (MEF) CNS ([(3)H]pirenzepine binding only).

View Article and Find Full Text PDF

Presenilin 1 (PS1) plays a critical role in the gamma-secretase processing of the amyloid precursor protein to generate the beta-amyloid peptide, which accumulates in plaques in the pathogenesis of Alzheimer's disease (AD). Mutations in PS1 cause early onset AD, and proteins that interact with PS1 are of major functional importance. We report here the coimmunoprecipitation of PS1 and acetylcholinesterase (AChE), an enzyme associated with amyloid plaques.

View Article and Find Full Text PDF

Accumulation of Abeta peptide in the brain results in the formation of amyloid plaques characteristic of Alzheimer's disease (AD) pathology. Abeta soluble oligomers and protofibrils are neurotoxic and these are believed to be a major cause of neurodegeneration in AD. Abeta is derived from a precursor protein by two sequential cleavage steps involving beta- and gamma-secretases, two proteolytic enzymes that represent rational drug targets.

View Article and Find Full Text PDF