In this study, we tested the hypothesis that machine learning methods can accurately classify extant primates based on triquetrum shape data. We then used this classification tool to observe the affinities between extant primates and fossil hominoids. We assessed the discrimination accuracy for an unsupervised and supervised learning pipeline, i.
View Article and Find Full Text PDFThis study investigates the maximal range of motion (ROM) during wrist deviation and forearm rotation for five different primate genera and the possible correlation with the shape of the distal ulna, triquetrum and hamate. A two-block phylogenetic partial least square analysis was performed to test this covariation in a phylogenetic context, using shape coordinates and a matrix of maximal ROM data as input data. The results show that gibbons have the highest ROM for both ulnar deviation and supination, whereas Macaca exhibited the lowest ROM for supination, and Pan had the lowest ROM for ulnar deviation.
View Article and Find Full Text PDFObjectives: In this study, we investigated the shape differences of the distal ulna in a phylogenetic context among a broad range of primate taxa. Furthermore, we evaluated covariation between ulnar and triquetrum shape and a possible association between ulnar shape and locomotor behavior.
Materials And Methods: We applied 3D geometric morphometrics on a large dataset comprising the distal ulna of 124 anthropoid primate specimens belonging to 12 different genera.
Objectives: The purpose of this study is to investigate the differences in 3D kinematics of the trapeziometacarpal (TMC) joint between gibbons (fam. Hylobatidae) and macaques (Macaca mulatta), two non-human primate groups with a distinct locomotor behavior. Gibbons are highly arboreal species, while macaques are quadrupeds.
View Article and Find Full Text PDFThe primate scapula has been studied widely since its shape has been shown to correlate with how the forelimb is used in daily activities. In this study, we expand on the existing literature and use an image-based methodology that was originally developed for orthopaedic practice to quantify and compare the three-dimensional (3D) morphology of the scapula across humans and great apes. We expect that this image-based approach will allow us to identify differences between great apes and humans that can be related to differences in mobility and loading regime of the shoulder.
View Article and Find Full Text PDFThe thumb has played a key role in primate evolution due to its involvement in grasping and manipulation. A large component of this wide functionality is by virtue of the uniquely shaped trapeziometacarpal (TMC) joint. This TMC joint allows for a broad range of functional positions, but how its bone structure is adapted to withstand such a large variety of loading regimes is poorly understood.
View Article and Find Full Text PDFIn this study, we investigate the branching patterns of the vascularization and innervation of the primate forelimb by performing detailed dissections of five unembalmed nonhuman primate specimens belonging to five different species, that is, rhesus macaque (Macaca mulatta), white-handed gibbon (Hylobates lar), Western gorilla (Gorilla gorilla), chimpanzee (Pan troglodytes), and bonobo (Pan paniscus). Results are compared with five embalmed human specimens (Homo sapiens), and anatomical data of previous studies on nonhuman primates are also included to provide a broader comparative framework. The results show that the overall configuration of the forelimb blood vessels and nerves of the different primate species is similar, although some apparent interspecific differences are found.
View Article and Find Full Text PDFThe primate thumb plays a central role in grasping and the basal trapeziometacarpal (TMC) joint is critical to its function. The TMC joint morphology varies across primates, yet little is known about form-function interaction within in the TMC joint. The purpose of this study was to investigate how stress distributions within the joint differ between five grasping types commonly employed by bonobos ().
View Article and Find Full Text PDFIn this study, we want to investigate the covariation in the shape of two carpal bones, the triquetrum and hamate, and the possible association with locomotor behavior in a broad range of primate taxa. We applied 3D Geometric Morphometrics on a large data set comprising 309 anthropoid primates of 12 different genera. Principal component analyses were performed on the covariance matrix of 18 (triquetrum) and 23 (hamate) Procrustes-aligned surface landmarks.
View Article and Find Full Text PDFNonhuman primates have a highly diverse locomotor repertoire defined by an equally diverse hand use. Based on how primates use their hands during locomotion, we can distinguish between terrestrial and arboreal taxa. The 'arboreal' hand is likely adapted towards high wrist mobility and grasping, whereas the 'terrestrial' hand will show adaptations to loading.
View Article and Find Full Text PDFPrimates live in very diverse environments and, as a consequence, show an equally diverse locomotor behaviour. During locomotion, the primate hand interacts with the superstrate and/or substrate and will therefore probably show adaptive signals linked with this locomotor behaviour. Whereas the morphology of the forearm and hand bones have been studied extensively, the functional adaptations in the hand musculature have been documented only scarcely.
View Article and Find Full Text PDFThe in vivo effect of four different types of thumb and thumb-wrist orthoses on the three-dimensional kinematics of the trapeziometacarpal (TMC), scaphotrapeziotrapezoidal (STT) and radioscaphoid joints was quantified using computed tomography (CT). Eighteen healthy female volunteers were recruited. The dominant hand of each subject was scanned in four thumb and wrist positions, each in three conditions: without orthosis, with a thumb orthosis (Push Ortho and immediate fitting, IMF) and with a thumb-wrist orthosis (Ligaflex Manu and IMF).
View Article and Find Full Text PDFIntroduction: Knowledge of internal finger loading during human and non-human primate activities such as tool use or knuckle-walking has become increasingly important to reconstruct the behaviour of fossil hominins based on bone morphology. Musculoskeletal models have proven useful for predicting these internal loads during human activities, but load predictions for non-human primate activities are missing due to a lack of suitable finger models. The main goal of this study was to implement both a human and a representative non-human primate finger model to facilitate comparative studies on metacarpal bone loading.
View Article and Find Full Text PDFHow changes in anatomy affect joint biomechanics can be studied using musculoskeletal modelling, making it a valuable tool to explore joint function in healthy and pathological joints. However, gathering the anatomical, geometrical and physiological data necessary to create a model can be challenging. Very few integrated datasets exist and even less raw data is openly available to create new models.
View Article and Find Full Text PDFBackground: Musculoskeletal and finite element modelling are often used to predict joint loading and bone strength within the human hand, but there is a lack of in vitro evidence of the force and strain experienced by hand bones.
Methods: This study presents a novel experimental setup that allows the positioning of a cadaveric digit in a variety of postures with the measurement of force and strain experienced by the third metacarpal. The setup allows for the measurement of fingertip force as well.
Ligament reconstruction can provide pain relief in patients with a painful, unstable, pre-arthritic trapeziometacarpal (TMC) joint. Imbrication of the dorsoradial ligament (DRL) has been proposed as a minimal invasive stabilization technique. It requires less invasive surgery than an Eaton-Littler technique and shows promising long-term clinical outcome.
View Article and Find Full Text PDFThe human hand is well known for its unique dexterity which is largely facilitated by a highly mobile, long and powerful thumb that enables both tool manufacturing and use, a key component of human evolution. The bonobo (Pan paniscus), the closest extant relative to modern humans together with the chimpanzee (Pan troglodytes), also possesses good manipulative capabilities but with a lower level of dexterity compared with modern humans. Despite the close phylogenetic relationship between bonobos and humans, detailed quantitative data of the bonobo forelimb musculature remains largely lacking.
View Article and Find Full Text PDFPurpose: To quantify the effect of osteoarthritis (OA) and total trapeziometacarpal (TMC) joint replacement on thumb kinematics during the primary physiological motions of the thumb.
Methods: We included 4 female patients with stage III TMC OA. A computed tomography-based markerless method was used to quantify the 3-dimensional thumb kinematics in patients before and after TMC joint replacement surgery with the Arpe implant.
Background: The contact biomechanics of the trapeziometacarpal joint have been investigated in several studies. However, these led to conflicting results and were mostly performed in vitro. The purpose of this study was to provide further insight on the contact biomechanics of the trapeziometacarpal joint by in vivo assessment of healthy and osteoarthritic subjects.
View Article and Find Full Text PDFThe thumb plays a crucial role in basic hand function. However, the kinematics of its entire articular chain have not yet been quantified. Such investigation is essential to improve our understanding of thumb function and to develop better strategies to treat thumb joint pathologies.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
October 2016
Background: The trapeziometacarpal joint is subjected to high compressive forces during powerful pinch and grasp tasks due to muscle loading. In addition, muscle contraction is important for stability of the joint. The aim of the present study is to explore if different muscle activation patterns can be found between three functional tasks.
View Article and Find Full Text PDFPart 1 of this article outlined the extensive osseous adaptations around the hip that occurred in the development of a habitual bipedal gait in modern humans. The shortest summary of these osseous changes is 'double extension', i.e.
View Article and Find Full Text PDFExtensive osseous adaptations of the lumbar spine, pelvis, hip and femur characterize the emergence of the human bipedal gait with its 'double extension' of the lumbar spine and hip. To accommodate lumbar lordosis, the pelvis was 'compacted', becoming wider and shorter, as compared with the non-human apes. The hip joint acquired a much more extended position, which can be seen in a broader evolutionary context of verticalization of limbs.
View Article and Find Full Text PDFBackground: Clinically locating the point of no rotation to determine the subtalar joint axis location by applying pressure on the plantar surface of the foot was described by Kirby in 1987 but was never validated. We sought to extend a previously validated mechanical model to cadaver feet and to examine the intratester and intertester reliability.
Methods: Four testers with different levels of experience determined the subtalar joint axis location and moved the subtalar joint through its range of motion, capturing the movement using kinematic analysis.