Tay-Sachs disease is a fatal neurodegenerative disorder caused by mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting expression by frameshift.
View Article and Find Full Text PDFRecent progress in genome editing technologies has catalyzed the generation of sophisticated cell models; however, the precise modeling of copy-number variation (CNV) diseases remains a significant challenge despite their substantial prevalence in the human population. To overcome this barrier, we have explored the utility of HAP1 cells for the accurate modeling of disease genomes with large structural variants. As an example, this study details the strategy to generate a novel cell line that serves as a model for the neurological disorder methyl CpG binding protein 2 (MECP2) duplication syndrome (MDS), featuring the critical duplication of both the and genes.
View Article and Find Full Text PDFBecker Muscular Dystrophy (BMD) is a rare X-linked recessive neuromuscular disorder frequently caused by in-frame deletions in the DMD gene that result in the production of a truncated, yet functional, dystrophin protein. The consequences of BMD-causing in-frame deletions on the organism are difficult to predict, especially in regard to long-term prognosis. Here, we employed CRISPR-Cas9 to generate a new Dmd del52-55 mouse model by deleting exons 52-55, resulting in a BMD-like in-frame deletion.
View Article and Find Full Text PDFUsing transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a disease with a life-threatening trajectory resulting from mutations in the dystrophin gene, leading to degeneration of skeletal muscle and fibrosis of cardiac muscle. The overwhelming majority of mutations are multiexonic deletions. We previously established a dystrophic mouse model with deletion of exons 52-54 in that develops an early-onset cardiac phenotype similar to DMD patients.
View Article and Find Full Text PDFIntroduction: Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined.
View Article and Find Full Text PDFATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males.
View Article and Find Full Text PDFMuscular dystrophies (MDs) comprise a diverse group of inherited disorders characterized by progressive muscle loss and weakness. Given the genetic etiology underlying MDs, researchers have explored the potential of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing as a therapeutic intervention, resulting in significant advances. Here, we review recent progress on the use of CRISPR/Cas9 genome editing as a potential therapy for MDs.
View Article and Find Full Text PDFThe folding and trafficking of transmembrane glycoproteins are essential for cellular homeostasis and are compromised in many diseases. In Niemann-Pick type C disease, a lysosomal disorder characterized by impaired intracellular cholesterol trafficking, the transmembrane glycoprotein NPC1 misfolds due to disease-causing missense mutations. While mutant NPC1 has emerged as a robust target for proteostasis modulators, drug development efforts have been unsuccessful in mouse models.
View Article and Find Full Text PDFHigh-throughput functional characterization of genetic variants in their endogenous locus has so far been possible only with methods that rely on homology-directed repair, which are limited by low editing efficiencies. Here, we adapted CRISPR prime editing for high-throughput variant classification and combined it with a strategy that allows for haploidization of any locus, which simplifies variant interpretation. We demonstrate the utility of saturation prime editing (SPE) by applying it to the NPC intracellular cholesterol transporter 1 gene (NPC1), mutations in which cause the lysosomal storage disorder Niemann-Pick disease type C.
View Article and Find Full Text PDFDeveloping safe and effective strategies to deliver biomolecules such as oligonucleotides and proteins into cells has grown in importance over recent years, with an increasing demand for non-viral methods that enable clinical translation. Here, we investigate uniquely configured oligo-urethane nanoparticles based on synthetic chemistries that minimize the release of pro-inflammatory biomarkers from immune cells, show low cytotoxicity in a broad range of cells, and efficiently deliver oligonucleotides and proteins into mammalian cells. The mechanism of cell uptake for the self-assembled oligo-urethane nanoparticles was shown to be directed by caveolae-dependent endocytosis in murine myoblasts (CC) cells.
View Article and Find Full Text PDFSignal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) is an autosomal dominant immune disorder marked by wide infectious predisposition, autoimmunity, vascular disease, and malignancy. Its molecular hallmark, elevated phospho-STAT1 (pSTAT1) following interferon (IFN) stimulation, is seen consistently in all patients and may not fully account for the broad phenotypic spectrum associated with this disorder. While over 100 mutations have been implicated in STAT1 GOF, genotype-phenotype correlation remains limited, and current overexpression models may be of limited use in gene expression studies.
View Article and Find Full Text PDFTandem duplication mutations are increasingly found to be the direct cause of many rare heritable diseases, accounting for up to 10% of cases. Unfortunately, animal models recapitulating such mutations are scarce, limiting our ability to study them and develop genome editing therapies. Here, we describe the generation of a novel duplication mouse model, harboring a multi-exonic tandem duplication in the Dmd gene which recapitulates a human mutation.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a life-threatening neuromuscular disease caused by the lack of dystrophin, resulting in progressive muscle wasting and locomotor dysfunctions. By adulthood, almost all patients also develop cardiomyopathy, which is the primary cause of death in DMD. Although there has been extensive effort in creating animal models to study treatment strategies for DMD, most fail to recapitulate the complete skeletal and cardiac disease manifestations that are presented in affected patients.
View Article and Find Full Text PDFNonsense-mediated decay (NMD) is a major pathogenic mechanism underlying a diversity of genetic disorders. Nonsense variants tend to lead to more severe disease phenotypes and are often difficult targets for small molecule therapeutic development as a result of insufficient protein production. The treatment of cystic fibrosis (CF), an autosomal recessive disease caused by mutations in the gene, exemplifies the challenge of therapeutically addressing nonsense mutations in human disease.
View Article and Find Full Text PDFThe accurate clinical interpretation of human sequence variation is foundational to personalized medicine. This remains a pressing challenge, however, as genome sequencing becomes routine and new functionally undefined variants rapidly accumulate. Here, we describe a platform for the rapid generation, characterization, and interpretation of genomic variants in haploid cells focusing on Niemann-Pick disease type C (NPC) as an example.
View Article and Find Full Text PDFNeuromuscular disorders are often caused by heterogeneous mutations in large, structurally complex genes. Targeting compensatory modifier genes could be beneficial to improve disease phenotypes. Here we report a mutation-independent strategy to upregulate the expression of a disease-modifying gene associated with congenital muscular dystrophy type 1A (MDC1A) using the CRISPR activation system in mice.
View Article and Find Full Text PDFSplice-site defects account for about 10% of pathogenic mutations that cause Mendelian diseases. Prevalence is higher in neuromuscular disorders (NMDs), owing to the unusually large size and multi-exonic nature of genes encoding muscle structural proteins. Therapeutic genome editing to correct disease-causing splice-site mutations has been accomplished only through the homology-directed repair pathway, which is extremely inefficient in postmitotic tissues such as skeletal muscle.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeat (CRISPR) has arisen as a frontrunner for efficient genome engineering. However, the potentially broad therapeutic implications are largely unexplored. Here, to investigate the therapeutic potential of CRISPR/Cas9 in a diverse set of genetic disorders, we establish a pipeline that uses readily obtainable cells from affected individuals.
View Article and Find Full Text PDFSrc is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src (thl/thl) ) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src (thl/thl) mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I).
View Article and Find Full Text PDFNeto2 is a transmembrane protein that interacts with the neuron-specific K(+)-Cl(-) cotransporter (KCC2) in the central nervous system (CNS). Efficient KCC2 transport is essential for setting the neuronal Cl(-) gradient, which is required for fast GABAergic inhibition. Neto2 is required to maintain the normal abundance of KCC2 in neurons, and increases KCC2 function by binding to the active oligomeric form of this cotransporter.
View Article and Find Full Text PDFKCC2 is the neuron-specific K+-Cl(-) cotransporter required for maintaining low intracellular Cl(-), which is essential for fast inhibitory synaptic transmission in the mature CNS. Despite the requirement of KCC2 for inhibitory synaptic transmission, understanding of the cellular mechanisms that regulate KCC2 expression and function is rudimentary. We examined KCC2 in its native protein complex in vivo to identify key KCC2-interacting partners that regulate KCC2 function.
View Article and Find Full Text PDF