Publications by authors named "Evgeny Zavedeev"

We study the properties of laser-induced periodic surface structures (LIPSS) formed on titanium-doped diamond-like nanocomposite (DLN) a-C:H:Si:O films during ablation processing with linearly-polarized beams of a visible femtosecond laser (wavelength 515 nm, pulse duration 320 fs, pulse repetition rates 100 kHz-2 MHz, scanning beam velocity 0.05-1 m/s). The studies are focused on (i) laser ablation characteristics of Ti-DLN films at different pulse frequencies and constant fluence close to the ablation threshold, (ii) effects of the polarization angle rotation on the properties of low spatial frequency LIPSS (LSFL), and (iii) nanofriction properties of the 'rotating' LIPSS using atomic force microscopy (AFM) in a lateral force mode.

View Article and Find Full Text PDF

The use of the ultrafast pulse is the current trend in laser processing many materials, including diamonds. Recently, the orientation of the irradiated crystal face was shown to play a crucial role in the diamond to graphite transition process. Here, we develop this approach and explore the nanostructure of the sp phase, and the structural perfection of the graphite produced.

View Article and Find Full Text PDF

In the paper, we study the formation of laser-induced periodic surface structures (LIPSS) on diamond-like nanocomposite (DLN) a-C:H:Si:O films during nanoscale ablation processing at low fluences-below the single-pulse graphitization and spallation thresholds-using an IR fs-laser (wavelength 1030 nm, pulse duration 320 fs, pulse repetition rate 100 kHz, scanning beam velocity 0.04-0.08 m/s).

View Article and Find Full Text PDF