In this work, we demonstrate a new approach for interactively assessing hyperspectral data spatial structures for heterogeneity using mass spectrometry imaging. This approach is based on the visualization of the cosine distance as the similarity levels between mass spectra of a chosen region and the rest of the image (sample). The applicability of the method is demonstrated on a set of mass spectrometry images of frontal mouse brain slices.
View Article and Find Full Text PDFRecently, mass-spectrometry methods show its utility in tumor boundary location. The effect of differences between research and clinical protocols such as low- and high-resolution measurements and sample storage have to be understood and taken into account to transfer methods from bench to bedside. In this study, we demonstrate a simple way to compare mass spectra obtained by different experimental protocols, assess its quality, and check for the presence of outliers and batch effect in the dataset.
View Article and Find Full Text PDFThe development of perspective diagnostic techniques in medicine requires efficient high-throughput biological sample analysis methods. Here, we present an inline cartridge extraction that facilitates the screening rate of mass spectrometry shotgun lipidomic analysis of tissue samples. We illustrate the method by its application to tumor tissue identification in neurosurgery.
View Article and Find Full Text PDF