Currently, an urgent need in the field of wearable electronics is the development of flexible sensors that can be attached to the human body to monitor various physiological indicators and movements. In this work, we propose a method for forming an electrically conductive network of multi-walled carbon nanotubes (MWCNT) in a matrix of silicone elastomer to make stretchable sensors sensitive to mechanical strain. The electrical conductivity and sensitivity characteristics of the sensor were improved by using laser exposure, through the effect of forming strong carbon nanotube (CNT) networks.
View Article and Find Full Text PDFLaser soldering is a current biophotonic technique for the surgical recovery of the integrity of soft tissues. This technology involves the use of a device providing laser exposure to the cut edges of the wound with a solder applied. The proposed solder consisted of an aqueous dispersion of biopolymer albumin (25 wt.
View Article and Find Full Text PDFBioengineering (Basel)
January 2022
This article describes the manufacturing technology of biocompatible flexible strain-sensitive sensor based on Ecoflex silicone and multi-walled carbon nanotubes (MWCNT). The sensor demonstrates resistive behavior. Structural, electrical, and mechanical characteristics are compared.
View Article and Find Full Text PDF