Development of chemo-resistance is a major challenge in glioblastoma (GB) treatment. This phenomenon is often driven by increased activation of genes associated with DNA repair, such as the alkyl-removing enzyme O-methylguanine-DNA methyltransferase (MGMT) in combination with overexpression of canonical genes related to cell proliferation and tumor progression, such as Polo-like kinase 1 (Plk1). Hereby, we attempt to sensitize resistant GB cells using our established amphiphilic poly(α)glutamate (APA): small interfering RNA (siRNA) polyplexes, targeting Plk1.
View Article and Find Full Text PDFNeural cell adhesion molecule (NCAM) is found to be a stem-cell marker in several tumor types and its overexpression is known to correlate with increased metastatic capacity. To combine extravasation- and ligand-dependent targeting to NCAM overexpressing-cells in the tumor microenvironment, we developed a PEGylated NCAM-targeted dendritic polyglycerol (PG) conjugate. Here, we describe the synthesis, physico-chemical characterization and biological evaluation of a PG conjugate bearing the mitotic inhibitor paclitaxel (PTX) and an NCAM-targeting peptide (NTP).
View Article and Find Full Text PDF