Publications by authors named "Evgeny P Pozhidaev"

Extraction of spectral information using liquid crystal (LC) retarders has recently become a topic of great interest because of its importance for creating hyper- and multispectral images in a compact and inexpensive way. However, this method of hyperspectral imaging requires thick LC-layer retarders (50 µm-100 µm and above) to obtain spectral modulation signals for reliable signal reconstruction. This makes the device extremely slow in the case of nematic LCs (NLCs), since the response time of NLCs increases proportionally to the square of the LC-layer thickness, which excludes fast dynamic processes monitoring.

View Article and Find Full Text PDF

We study the electro-optic properties of subwavelength-pitch deformed-helix ferroelectric liquid crystals (DHFLC) illuminated with unpolarized light. In the experimental setup based on the Mach-Zehnder interferometer, it was observed that the reference and the sample beams being both unpolarized produce the interference pattern which is insensitive to rotation of in-plane optical axes of the DHFLC cell. We find that the field-induced shift of the interference fringes can be described in terms of the electrically dependent Pancharatnam relative phase determined by the averaged phase shift, whereas the visibility of the fringes is solely dictated by the phase retardation.

View Article and Find Full Text PDF

We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data.

View Article and Find Full Text PDF

We disclose the vertically aligned deformed helix ferroelectric liquid crystal whose Kerr constant (Kkerr≈130  nm/V2 at λ=543  nm) is around one order of magnitude higher than any other value previously reported for liquid crystalline structures. Under certain conditions, the phase modulation with ellipticity less than 0.05 over the range of continuous and hysteresis-free electric adjustment of the phase shift from zero to 2π has been obtained at subkilohertz frequency.

View Article and Find Full Text PDF

We study both theoretically and experimentally the electro-optical properties of vertically aligned deformed helix ferroelectric liquid crystals (VADHFLC) with subwavelength pitch that are governed by the electrically induced optical biaxiality of the smectic helical structure. The key theoretical result is that the principal refractive indices of homogenized VADHFLC cells exhibit the quadratic nonlinearity and such behavior might be interpreted as an orientational Kerr effect caused by the electric-field-induced orientational distortions of the FLC helix. In our experiments, it has been observed that, for sufficiently weak electric fields, the magnitude of biaxiality is proportional to the square of electric field in good agreement with our theoretical results for the effective dielectric tensor of VADHFLCs.

View Article and Find Full Text PDF