Publications by authors named "Evgeny Lukyanets"

Microencapsulation and targeted delivery of cytotoxic and antibacterial agents of photodynamic therapy (PDT) improve the treatment outcomes for infectious diseases and cancer. In many cases, the loss of activity, poor encapsulation efficiency, and inadequate drug dosing hamper the success of this strategy. Therefore, the development of novel and reliable microencapsulated drug formulations granting high efficacy is of paramount importance.

View Article and Find Full Text PDF

An unprecedented stable neutral radical nickel(II) complex of 3,5-bis(dimedonyl)azadiisoindomethene (1) was prepared by the direct reaction between 1,3-diiminoisoindoline and dimedone. A new radical complex 1 has an intense and narrow absorption at 1008 nm and can be reduced to a less stable anionic [1] with a typical aza(dibenzo)boron dipyrromethene (aza-BODIPY) UV-vis spectrum. Complex 1, along with two other colored condensation reaction products 2 and 3, was characterized by spectroscopy and X-ray crystallography, while the paramagnetic nature of 1 was probed by EPR and SQUID methods.

View Article and Find Full Text PDF

Physico-chemical properties, biodistribution in animal tissues, and PDT efficacy of bacteriochlorin photosensitizers, namely cationic salts of synthetic meso-tetrakis(N-alkyl-3-pyridyl)bacteriochlorins were studied in НЕр2 cell line and in the LLC mouse model. The tested compounds showed high stability in the dark and high in vitro phototoxicity against НЕр2 cells (the half maximal inhibitory concentration LD50 in the range from 0.34±0.

View Article and Find Full Text PDF

In photodynamic therapy (PDT), photosensitizers are required to arrive in high concentrations at selective targets like cancer cells avoiding toxicity in healthy tissue. In this work, we propose the application of porous calcium carbonate carriers in the form of polycrystalline vaterite for this task. We investigated the loading efficiency for the photosensitizer Photosens in vaterite micro- and nanocarriers.

View Article and Find Full Text PDF

We compare the two-photon absorption (2PA) spectra of non-centrosymmetrical metal-free tribenzo-tetraazachlorin (H2TBTAC) and analogous symmetrical tetra-tert-butyl-phthalocyanine (H2TtBuPc). Surprisingly, despite formal lack of center of inversion, the 2PA spectrum of H2TBTAC displays a two-photon allowed transition at 935 nm, similar to gerade-gerade (g-g) transitions observed in H2TtBuPc and in other symmetrical phthalocyanines. This transition is even better resolved in the singlet-singlet excited-state absorption spectrum.

View Article and Find Full Text PDF

Minor products in the reaction between substituted 1,3-diiminoisoindolines and 2,5-diamino-3,4-dicyanothiophene were identified as the nickel seco-tribenzoporphyrazines 4 and 5, which have been characterized by UV-vis, MCD, NMR, and mass spectroscopy. Experimentally observed tetraazachlorin-type UV-vis spectra of new seco-tribenzoporphyrazines were explained on the basis of DFT and TDDFT calculations.

View Article and Find Full Text PDF

Expanded phthalocyanine (Pc) congeners with two Mo or W central metal ions and four isoindole ring moieties have been synthesized using normal Pc formation conditions in the presence of urea. The products have been characterized by electrochemistry; mass spectrometry (MS); IR, electron paramagnetic resonance (EPR), NMR, electronic absorption, and magnetic circular dichroism (MCD) spectroscopies; and X-ray analysis. The X-ray structures have rectangular C(2v) symmetry and provide evidence that the central Mo atoms are linked by a single bond and coordinated by two isoindole nitrogen atoms and two nitrogen atoms from the amine moieties.

View Article and Find Full Text PDF

In 1992-2006 at P.A. Hertsen Moscow Oncology Research Institute photodynamic therapy (PDT) was performed in 48 esophageal cancer patients (total 48 lesions).

View Article and Find Full Text PDF

Mixed condensation of tetramethylsuccinonitrile and either 2,3-dicyano-5,6-diethylpyrazine, 2,3-dicyanopyridine, or 3,4-pyridinedicarboximide in the presence of nickel chloride forms novel pyrazine-, 2,3-pyridine-, or 3,4-pyridine-ring-fused tetraazachlorin (TAC), tetraazabacteriochlorin (TABC), and tetraazaisobacteriochlorin (TAiBC) derivatives. All possible structural isomers were separated using repeated thin-layer chromatography and have been investigated by absorption and magnetic circular dichroism spectroscopy. Similarly to previously reported TAC analogues, the TAC and TABC derivatives show large splitting of the Q band, while a single, intense absorption band is observed for the TAiBC derivatives.

View Article and Find Full Text PDF

meso-Aryl tribenzosubporphyrin was synthesized by a self-condensation of 3-benzalphthalimidine and by a condensation of phthalimide with phenylacetic acid using boric acid as a template; the compounds derived were characterized based on a wide range of spectroscopic and electrochemical methods.

View Article and Find Full Text PDF

N-(Porphyrin-2-ylmethyl)glycine was synthesized and used as precursor of azomethine ylide, which was trapped with several dipolarophiles. The reaction of that azomethine ylide with dimethyl fumarate afforded the expected adduct. However, with 1,4-benzo- and 1,4-naphthoquinones only dehydrogenated adducts were isolated.

View Article and Find Full Text PDF

Benzene- or 2,3-naphthalene-ring-expanded tetraazachlorins (TACs), tetraazabacteriochlorins (TABCs), and tetraazaisobacteriochlorins (TAiBCs) have been synthesized by using tetramethylsuccinonitrile as a source of hydrogenated sites. The derived compounds were characterized by using NMR spectroscopy, X-ray crystallography, electronic and magnetic circular dichroism (MCD) spectroscopy, and electrochemical and spectroelectrochemical methods. X-ray analysis revealed that the benzene-fused TAiBC deviates slightly from planarity at the hydrogenated sites as a result of the presence of sp(3) carbons, which prefer a nonplanar tetrahedral conformation.

View Article and Find Full Text PDF

Metal-free tetraazachlorin (TAC), -bacteriochlorin (TAB), and -isobacteriochlorin (TAiB) were characterized by electronic absorption, magnetic circular dichroism (MCD), fluorescence, and time-resolved ESR (TR-ESR) spectroscopy, and by cyclic voltammetry. The results are compared with those of metal-free tetraazaporphyrin (TAP). The potential difference DeltaE between the first oxidation and reduction couples decreases in the order TAP>TAiB>TAC>TAB.

View Article and Find Full Text PDF