In the current study, we aimed to investigate the associations between the natural variability in hyperactivity and inattention scores, as well as their combination with EEG oscillatory responses in the Stop-Signal task in a sample of healthy children. During performance, the Stop-Signal task EEGs were recorded in 94 Caucasian children (40 girls) from 7 to 10 years. Hyperactivity/inattention and inattention scores positively correlated with RT variability.
View Article and Find Full Text PDFNeuroimaging studies have revealed a multitude of brain regions associated with self- and other-referential processing, but the question how the distinction between self, close other, and distant other is processed in the brain still remains unanswered. The default mode network (DMN) is the primary network associated with the processing of self, whereas task-positive networks (TPN) are indispensable for the processing of external objects. We hypothesize that self- and close-other-processing would engage DMN more than TPN, whereas distant-other-processing would engage TPN to a greater extent.
View Article and Find Full Text PDFMuscle LIM protein (MLP) has long been regarded as a muscle-specific protein. Here, we report that MLP expression is induced in adult rat retinal ganglion cells (RGCs) upon axotomy, and its expression is correlated with their ability to regenerate injured axons. Specific knockdown of MLP in RGCs compromises axon regeneration, while overexpression in vivo facilitates optic nerve regeneration and regrowth of sensory neurons without affecting neuronal survival.
View Article and Find Full Text PDFImplications of GSK3 activity for axon regeneration are often inconsistent, if not controversial. Sustained GSK3 activity in GSK3 knock-in mice reportedly accelerates peripheral nerve regeneration via increased MAP1B phosphorylation and concomitantly reduces microtubule detyrosination. In contrast, the current study shows that lens injury-stimulated optic nerve regeneration was significantly compromised in these knock-in mice.
View Article and Find Full Text PDFMuscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days.
View Article and Find Full Text PDFDelivery and expression of recombinant genes, a key methodology for many applications in biological research, remains a challenge especially for mature neurons. Here, we report easy, highly efficient and well tolerated transduction of adult peripheral and central neuronal populations of diverse species in culture using VSV-G pseudo-typed, recombinant baculovirus (BacMam). Transduction rates of up to 80% were reliably achieved at high multiplicity of infection without apparent neuro-cytopathic effects.
View Article and Find Full Text PDFRetinal ganglion cells (RGCs) do not normally regenerate injured axons, but die upon axotomy. Although IL-6-like cytokines are reportedly neuroprotective and promote optic nerve regeneration, their overall regenerative effects remain rather moderate. Here, we hypothesized that direct activation of the gp130 receptor by the designer cytokine hyper-IL-6 (hIL-6) might induce stronger RGC regeneration than natural cytokines.
View Article and Find Full Text PDFMuscle LIM protein (MLP) is a member of the cysteine rich protein family and has so far been regarded as a muscle-specific protein that is mainly involved in myogenesis and the organization of cytoskeletal structure in myocytes, respectively. The current study demonstrates for the first time that MLP expression is not restricted to muscle tissue, but is also found in the rat naive central nervous system. Using quantitative PCR, Western blot and immunohistochemical analyses we detected MLP in the postnatal rat retina, specifically in the somas and dendritic arbors of cholinergic amacrine cells (AC) of the inner nuclear layer and the ganglion cell layer (displaced AC).
View Article and Find Full Text PDFThe relationship between trait anxiety and event-related EEG oscillatory reactions in the stop-signal paradigm was studied in 15 non-clinical subjects with average age of 26 years (13 men). In the paradigm, subjects responded to target stimuli by pressing one of the two choice buttons. In 30 out of 130 trials, target presentation was followed by a stop-signal, indicating that subjects had to refrain from a prepared motor response.
View Article and Find Full Text PDFA previous study by us indicated that peripheral-type benzodiazepine receptor (PBR) density may be increased in the ovaries and uterus of pregnant rats (Weizman R, Dagan E, Snyder SH, Gavish M. Impact of pregnancy and lactation on GABAA receptor and central-type and peripheral-type benzodiazepine receptors. Brain Res 1997;752:7-14).
View Article and Find Full Text PDFPeripheral-type benzodiazepine receptors (PBR) are constituted by three protein components, the isoquinoline binding protein (IBP), the voltage-dependent anion channel (VDAC), and the adenine nucleotide transporter (ANT). Recently, we found that high levels of PBR ligand binding in glioma cell lines correlate with in vitro tumorigenicity. To study whether enhanced PBR expression is causative or in response to cancer, we genetically modified C6 glioma cells.
View Article and Find Full Text PDFThe peripheral-type benzodiazepine receptor is found primarily on the outer mitochondrial membrane and consists of three subunits: the 18kDa isoquinoline binding protein, the 32kDa voltage-dependent anion channel, and the 30kDa adenine nucleotide transporter. The current study evaluates the potential importance of peripheral-type benzodiazepine receptor expression in glioma cell tumorigenicity. While previous studies have suggested that peripheral-type benzodiazepine receptor-binding may be relatively increased in tumor tissue and cells, so far, little is known about the relationships between peripheral-type benzodiazepine receptor density and factors underlying tumorigenicity.
View Article and Find Full Text PDF